Ads
related to: non periodic functions definition math problems and answers worksheets 2nd
Search results
Results from the WOW.Com Content Network
In mathematics, a quasiperiodic function is a function that has a certain similarity to a periodic function. [1] A function f {\displaystyle f} is quasiperiodic with quasiperiod ω {\displaystyle \omega } if f ( z + ω ) = g ( z , f ( z ) ) {\displaystyle f(z+\omega )=g(z,f(z))} , where g {\displaystyle g} is a " simpler " function than f ...
In mathematics, some functions or groups of functions are important enough to deserve their own names. This is a listing of articles which explain some of these functions in more detail. There is a large theory of special functions which developed out of statistics and mathematical physics.
Any function that consists only of periodic functions with the same period is also periodic (with period equal or smaller), including: addition, subtraction, multiplication and division of periodic functions, and; taking a power or a root of a periodic function (provided it is defined for all ).
This is a list of some well-known periodic functions. The constant function f (x) = c, where c is independent of x, is periodic with any period, but lacks a fundamental period. A definition is given for some of the following functions, though each function may have many equivalent definitions.
The concept of an almost periodic function (also called a quasiperiodic function) was studied by Bohr, including work of Bohl and Escanglon. [47] He introduced the notion of a superspace. Bohr showed that quasiperiodic functions arise as restrictions of high-dimensional periodic functions to an irrational slice (an intersection with one or more ...
A quasiperiodic motion can be expressed as a function of time whose value is a vector of "quasiperiodic functions". A quasiperiodic function f on the real line is a function obtained from a function F on a standard torus T (defined by n angles), by means of a trajectory in the torus in which each angle increases at a constant rate. [ 7 ]
Fourier discovered that every continuous, periodic function could be described as an infinite sum of trigonometric functions. Even non-periodic functions can be represented as an integral of sines and cosines through the Fourier transform. This has applications to quantum mechanics [64] and communications, [65] among other fields.
A Fourier series (/ ˈ f ʊr i eɪ,-i ər / [1]) is an expansion of a periodic function into a sum of trigonometric functions. The Fourier series is an example of a trigonometric series. [2] By expressing a function as a sum of sines and cosines, many problems involving the function become easier to analyze because trigonometric functions are ...
Ads
related to: non periodic functions definition math problems and answers worksheets 2nd