enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Power rule - Wikipedia

    en.wikipedia.org/wiki/Power_rule

    In calculus, the power rule is used to differentiate functions of the form () = , whenever is a real number ... and the x-axis, was a logarithmic function, ...

  3. Reactances of synchronous machines - Wikipedia

    en.wikipedia.org/wiki/Reactances_of_synchronous...

    The air gap of the machines with a salient pole rotor is quite different along the pole axis (so called direct axis) and in the orthogonal direction (so called quadrature axis). Andre Blondel in 1899 proposed in his paper "Empirical Theory of Synchronous Generators" the two reactions theory that divided the armature magnetomotive force (MMF ...

  4. Differentiation rules - Wikipedia

    en.wikipedia.org/wiki/Differentiation_rules

    The most general power rule is the functional power rule: for any functions and , ′ = (⁡) ′ = (′ + ′ ⁡), wherever both sides are well defined. Special cases: If f ( x ) = x a {\textstyle f(x)=x^{a}} , then f ′ ( x ) = a x a − 1 {\textstyle f'(x)=ax^{a-1}} when a {\textstyle a} is any nonzero real number and x {\textstyle x} is ...

  5. Notation for differentiation - Wikipedia

    en.wikipedia.org/wiki/Notation_for_differentiation

    It is particularly common when the equation y = f(x) is regarded as a functional relationship between dependent and independent variables y and x. Leibniz's notation makes this relationship explicit by writing the derivative as: [ 1 ] d y d x . {\displaystyle {\frac {dy}{dx}}.}

  6. Time derivative - Wikipedia

    en.wikipedia.org/wiki/Time_derivative

    power is the time derivative of energy; electric current is the time derivative of electric charge; and so on. A common occurrence in physics is the time derivative of a vector, such as velocity or displacement. In dealing with such a derivative, both magnitude and orientation may depend upon time.

  7. Rotation of axes in two dimensions - Wikipedia

    en.wikipedia.org/wiki/Rotation_of_axes_in_two...

    A point P has coordinates (x, y) with respect to the original system and coordinates (x′, y′) with respect to the new system. [1] In the new coordinate system, the point P will appear to have been rotated in the opposite direction, that is, clockwise through the angle . A rotation of axes in more than two dimensions is defined similarly.

  8. Euler's formula - Wikipedia

    en.wikipedia.org/wiki/Euler's_formula

    r = | z | = √ x 2 + y 2 is the magnitude of z and; φ = arg z = atan2(y, x). φ is the argument of z, i.e., the angle between the x axis and the vector z measured counterclockwise in radians, which is defined up to addition of 2π. Many texts write φ = tan −1 ⁠ y / x ⁠ instead of φ = atan2(y, x), but the first equation needs ...

  9. Spherical coordinate system - Wikipedia

    en.wikipedia.org/wiki/Spherical_coordinate_system

    The 'south'-direction x-axis is depicted but the 'north'-direction x-axis is not. (As in physics, ρ is often used instead of r to avoid confusion with the value r in cylindrical and 2D polar coordinates.) According to the conventions of geographical coordinate systems, positions are measured by latitude, longitude, and height (altitude).