enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Taylor series - Wikipedia

    en.wikipedia.org/wiki/Taylor_series

    The function e (−1/x 2) is not analytic at x = 0: the Taylor series is identically 0, although the function is not. If f (x) is given by a convergent power series in an open disk centred at b in the complex plane (or an interval in the real line), it is said to be analytic in this region.

  3. Taylor's theorem - Wikipedia

    en.wikipedia.org/wiki/Taylor's_theorem

    v. t. e. In calculus, Taylor's theorem gives an approximation of a -times differentiable function around a given point by a polynomial of degree , called the -th-order Taylor polynomial. For a smooth function, the Taylor polynomial is the truncation at the order of the Taylor series of the function.

  4. Radius of convergence - Wikipedia

    en.wikipedia.org/wiki/Radius_of_convergence

    Example 2: The power series for g(z) = −ln(1 − z), expanded around z = 0, which is =, has radius of convergence 1, and diverges for z = 1 but converges for all other points on the boundary. The function f(z) of Example 1 is the derivative of g(z). Example 3: The power series

  5. Arctangent series - Wikipedia

    en.wikipedia.org/wiki/Arctangent_series

    Each term of this modified series is a rational function with its poles at = in the complex plane, the same place where the arctangent function has its poles. By contrast, a polynomial such as the Taylor series for arctangent forces all of its poles to infinity.

  6. Power series - Wikipedia

    en.wikipedia.org/wiki/Power_series

    Power series. In mathematics, a power series (in one variable) is an infinite series of the form where an represents the coefficient of the n th term and c is a constant called the center of the series. Power series are useful in mathematical analysis, where they arise as Taylor series of infinitely differentiable functions.

  7. Euler numbers - Wikipedia

    en.wikipedia.org/wiki/Euler_numbers

    Euler numbers. In mathematics, the Euler numbers are a sequence En of integers (sequence A122045 in the OEIS) defined by the Taylor series expansion. where is the hyperbolic cosine function. The Euler numbers are related to a special value of the Euler polynomials, namely: The Euler numbers appear in the Taylor series expansions of the secant ...

  8. Mercator series - Wikipedia

    en.wikipedia.org/wiki/Mercator_series

    Polynomial approximation to logarithm with n=1, 2, 3, and 10 in the interval (0,2). In mathematics, the Mercator series or Newton–Mercator series is the Taylor series for the natural logarithm: In summation notation, {\displaystyle \ln (1+x)=\sum _ {n=1}^ {\infty } {\frac { (-1)^ {n+1}} {n}}x^ {n}.} The series converges to the natural ...

  9. Series expansion - Wikipedia

    en.wikipedia.org/wiki/Series_expansion

    A Laurent series is a generalization of the Taylor series, allowing terms with negative exponents; it takes the form = and converges in an annulus. [6] In particular, a Laurent series can be used to examine the behavior of a complex function near a singularity by considering the series expansion on an annulus centered at the singularity.