Search results
Results from the WOW.Com Content Network
A general-purpose factoring algorithm, also known as a Category 2, Second Category, or Kraitchik family algorithm, [10] has a running time which depends solely on the size of the integer to be factored. This is the type of algorithm used to factor RSA numbers. Most general-purpose factoring algorithms are based on the congruence of squares method.
Decomposition paradigm. A decomposition paradigm in computer programming is a strategy for organizing a program as a number of parts, and usually implies a specific way to organize a program text. Typically the aim of using a decomposition paradigm is to optimize some metric related to program complexity, for example a program's modularity or ...
Factorization of polynomials. In mathematics and computer algebra, factorization of polynomials or polynomial factorization expresses a polynomial with coefficients in a given field or in the integers as the product of irreducible factors with coefficients in the same domain. Polynomial factorization is one of the fundamental components of ...
In number theory, the general number field sieve (GNFS) is the most efficient classical algorithm known for factoring integers larger than 10100. Heuristically, its complexity for factoring an integer n (consisting of ⌊log2 n⌋ + 1 bits) is of the form. in O and L-notations. [1] It is a generalization of the special number field sieve: while ...
In next section we describe an algorithm by Shoup (1990), which is also an equal-degree factorization algorithm, but is deterministic. All these algorithms require an odd order q for the field of coefficients. For more factorization algorithms see e.g. Knuth's book The Art of Computer Programming volume 2. Algorithm Cantor–Zassenhaus algorithm.
Berlekamp's algorithm. In mathematics, particularly computational algebra, Berlekamp's algorithm is a well-known method for factoring polynomials over finite fields (also known as Galois fields). The algorithm consists mainly of matrix reduction and polynomial GCD computations. It was invented by Elwyn Berlekamp in 1967.
Quadratic sieve. The quadratic sieve algorithm (QS) is an integer factorization algorithm and, in practice, the second-fastest method known (after the general number field sieve). It is still the fastest for integers under 100 decimal digits or so, and is considerably simpler than the number field sieve. It is a general-purpose factorization ...
Fermat's factorization method, named after Pierre de Fermat, is based on the representation of an odd integer as the difference of two squares: That difference is algebraically factorable as ; if neither factor equals one, it is a proper factorization of N. Each odd number has such a representation. Indeed, if is a factorization of N, then.