enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cauchy product - Wikipedia

    en.wikipedia.org/wiki/Cauchy_product

    The Cauchy product may apply to infinite series [1] [2] or power series. [3] [4] When people apply it to finite sequences [5] or finite series, that can be seen merely as a particular case of a product of series with a finite number of non-zero coefficients (see discrete convolution).

  3. 1 − 2 + 3 − 4 + ⋯ - ⋯ - Wikipedia

    en.wikipedia.org/wiki/1_%E2%88%92_2_%2B_3_%E2%88...

    The Cauchy product of two infinite series is defined even when both of them are divergent. In the case where a n = b n = (−1) n, ...

  4. Cauchy sequence - Wikipedia

    en.wikipedia.org/wiki/Cauchy_sequence

    Such a series = is considered to be ... are two Cauchy sequences in the rational, real or complex numbers, then the sum (+) and the product are also Cauchy sequences. ...

  5. Series (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Series_(mathematics)

    Therefore, first, the series resulting from addition is summable if the series added were summable, and, second, the sum of the resulting series is the addition of the sums of the added series. The addition of two divergent series may yield a convergent series: for instance, the addition of a divergent series with a series of its terms times ...

  6. Absolute convergence - Wikipedia

    en.wikipedia.org/wiki/Absolute_convergence

    The proof is the same as for complex-valued series: use the completeness to derive the Cauchy criterion for convergence—a series is convergent if and only if its tails can be made arbitrarily small in norm—and apply the triangle inequality. In particular, for series with values in any Banach space, absolute convergence implies convergence ...

  7. Generating function - Wikipedia

    en.wikipedia.org/wiki/Generating_function

    A discrete convolution of the terms in two formal power series turns a product of generating functions into a generating function enumerating a convolved sum of the original sequence terms (see Cauchy product). Consider A(z) and B(z) are ordinary generating functions.

  8. Cauchy–Schwarz inequality - Wikipedia

    en.wikipedia.org/wiki/Cauchy–Schwarz_inequality

    where , is the inner product.Examples of inner products include the real and complex dot product; see the examples in inner product.Every inner product gives rise to a Euclidean norm, called the canonical or induced norm, where the norm of a vector is denoted and defined by ‖ ‖:= , , where , is always a non-negative real number (even if the inner product is complex-valued).

  9. Convolution - Wikipedia

    en.wikipedia.org/wiki/Convolution

    In other words, the output transform is the pointwise product of the input transform with a third transform (known as a transfer function). See Convolution theorem for a derivation of that property of convolution. Conversely, convolution can be derived as the inverse Fourier transform of the pointwise product of two Fourier transforms.