Search results
Results from the WOW.Com Content Network
A hydraulic system is required for high speed flight and large aircraft to convert the crews' control system movements to surface movements. The hydraulic system is also used to extend and retract landing gear, operate flaps and slats, operate the wheel brakes and steering systems.
The systems evolved, replacing the mechanical linkages to the valves with electrical controls, producing the "fly-by-wire" design, [3] and more recently, optical networking systems called "fly-by-light". All these systems require three separate components, the hydraulic supply system, the valves and associated control network, and the actuators.
Cockpit controls and instrument panel of a Cessna 182D Skylane. Generally, the primary cockpit flight controls are arranged as follows: [2] A control yoke (also known as a control column), centre stick or side-stick (the latter two also colloquially known as a control or joystick), governs the aircraft's roll and pitch by moving the ailerons (or activating wing warping on some very early ...
The controls (stick and rudder) for rotary wing aircraft (helicopter or autogyro) accomplish the same motions about the three axes of rotation, but manipulate the rotating flight controls (main rotor disk and tail rotor disk) in a completely different manner. Flight control surfaces are operated by aircraft flight control systems.
In aviation, a power transfer unit (PTU) is a device that transfers hydraulic power from one of an aircraft's hydraulic systems to another in the event that the other system has failed or been turned off. The PTU is used when, for example, there is right hydraulic system pressure but no left hydraulic system pressure.
The main hydraulic system provided pressure for undercarriage raising and lowering and bogie trim; nosewheel centring and steering; wheel brakes (fitted with Maxarets); bomb doors opening and closing; and (B.2 only) AAPP air scoop lowering. Hydraulic pressure was provided by three hydraulic pumps fitted to Nos. 1, 2 and 3 engines. An ...
Human muscle power alone is not enough for larger and more powerful aircraft, so hydraulic systems are used, in which yoke movements control hydraulic valves and actuators. In more modern aircraft, inputs may first be sent to a fly-by-wire system, which then sends a corresponding signal to actuators attached to the aileron booster systems and ...
The Airbus A320 family was the first airliner to feature a full glass cockpit and digital fly-by-wire flight control system. The only analogue instruments were the radio magnetic indicator, brake pressure indicator, standby altimeter and artificial horizon, the latter two being replaced by a digital integrated standby instrument system in later production models.