enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Discontinuities of monotone functions - Wikipedia

    en.wikipedia.org/wiki/Discontinuities_of...

    Let be a real-valued monotone function defined on an interval. Then the set of discontinuities of the first kind is at most countable.. One can prove [5] [3] that all points of discontinuity of a monotone real-valued function defined on an interval are jump discontinuities and hence, by our definition, of the first kind.

  3. Classification of discontinuities - Wikipedia

    en.wikipedia.org/wiki/Classification_of...

    The function in example 1, a removable discontinuity. Consider the piecewise function = {< = >. The point = is a removable discontinuity.For this kind of discontinuity: The one-sided limit from the negative direction: = and the one-sided limit from the positive direction: + = + at both exist, are finite, and are equal to = = +.

  4. Inflection point - Wikipedia

    en.wikipedia.org/wiki/Inflection_point

    An example of a stationary point of inflection is the point (0, 0) on the graph of y = x 3. The tangent is the x-axis, which cuts the graph at this point. An example of a non-stationary point of inflection is the point (0, 0) on the graph of y = x 3 + ax, for any nonzero a. The tangent at the origin is the line y = ax, which cuts the graph at ...

  5. Thomae's function - Wikipedia

    en.wikipedia.org/wiki/Thomae's_function

    is continuous at every irrational number, so its points of continuity are dense within the real numbers. Proof of continuity at irrational arguments Since f {\displaystyle f} is periodic with period 1 {\displaystyle 1} and 0 ∈ Q , {\displaystyle 0\in \mathbb {Q} ,} it suffices to check all irrational points in I = ( 0 , 1 ) . {\displaystyle I ...

  6. Laplace operator - Wikipedia

    en.wikipedia.org/wiki/Laplace_operator

    In mathematics, the Laplace operator or Laplacian is a differential operator given by the divergence of the gradient of a scalar function on Euclidean space. It is usually denoted by the symbols ∇ ⋅ ∇ {\displaystyle \nabla \cdot \nabla } , ∇ 2 {\displaystyle \nabla ^{2}} (where ∇ {\displaystyle \nabla } is the nabla operator ), or Δ ...

  7. Critical point (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Critical_point_(mathematics)

    A critical point of such a curve, for the projection parallel to the y-axis (the map (x, y) → x), is a point of the curve where (,) = This means that the tangent of the curve is parallel to the y -axis, and that, at this point, g does not define an implicit function from x to y (see implicit function theorem ).

  8. Singularity (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Singularity_(mathematics)

    For example, the equation y 2 − x 3 = 0 defines a curve that has a cusp at the origin x = y = 0. One could define the x-axis as a tangent at this point, but this definition can not be the same as the definition at other points. In fact, in this case, the x-axis is a "double tangent." For affine and projective varieties, the singularities are ...

  9. Gibbs phenomenon - Wikipedia

    en.wikipedia.org/wiki/Gibbs_phenomenon

    The Gibbs phenomenon manifests as a cross pattern artifact in the discrete Fourier transform of an image, [18] where most images (e.g. micrographs or photographs) have a sharp discontinuity between boundaries at the top / bottom and left / right of an image. When periodic boundary conditions are imposed in the Fourier transform, this jump ...