enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Discontinuities of monotone functions - Wikipedia

    en.wikipedia.org/wiki/Discontinuities_of...

    Conversely, by a differentiation theorem of Lebesgue, the jump function f is uniquely determined by the properties: [14] (1) being non-decreasing and non-positive; (2) having given jump data at its points of discontinuity x n; (3) satisfying the boundary condition f (a) = 0; and (4) having zero derivative almost everywhere.

  3. Floor and ceiling functions - Wikipedia

    en.wikipedia.org/wiki/Floor_and_ceiling_functions

    At points of discontinuity, a Fourier series converges to a value that is the average of its limits on the left and the right, unlike the floor, ceiling and fractional part functions: for y fixed and x a multiple of y the Fourier series given converges to y/2, rather than to x mod y = 0. At points of continuity the series converges to the true ...

  4. Classification of discontinuities - Wikipedia

    en.wikipedia.org/wiki/Classification_of...

    The function in example 1, a removable discontinuity. Consider the piecewise function = {< = >. The point = is a removable discontinuity.For this kind of discontinuity: The one-sided limit from the negative direction: = and the one-sided limit from the positive direction: + = + at both exist, are finite, and are equal to = = +.

  5. Branch point - Wikipedia

    en.wikipedia.org/wiki/Branch_point

    The points of X where ƒ fails to be a cover are the ramification points of ƒ, and the image of a ramification point under ƒ is called a branch point. For any point P ∈ X and Q = ƒ(P) ∈ Y, there are holomorphic local coordinates z for X near P and w for Y near Q in terms of which the function ƒ(z) is given by =

  6. Gibbs phenomenon - Wikipedia

    en.wikipedia.org/wiki/Gibbs_phenomenon

    Since the Gibbs phenomenon comes from undershooting, it may be eliminated by using kernels that are never negative, such as the Fejér kernel. [12] [13]In practice, the difficulties associated with the Gibbs phenomenon can be ameliorated by using a smoother method of Fourier series summation, such as Fejér summation or Riesz summation, or by using sigma-approximation.

  7. Convergence of Fourier series - Wikipedia

    en.wikipedia.org/wiki/Convergence_of_Fourier_series

    There are many known sufficient conditions for the Fourier series of a function to converge at a given point x, for example if the function is differentiable at x. Even a jump discontinuity does not pose a problem: if the function has left and right derivatives at x, then the Fourier series converges to the average of the left and right limits ...

  8. Thomae's function - Wikipedia

    en.wikipedia.org/wiki/Thomae's_function

    See the proofs for continuity and discontinuity above for the construction of appropriate neighbourhoods, where has maxima. f {\displaystyle f} is Riemann integrable on any interval and the integral evaluates to 0 {\displaystyle 0} over any set.

  9. Derivative test - Wikipedia

    en.wikipedia.org/wiki/Derivative_test

    Stated precisely, suppose that f is a real-valued function defined on some open interval containing the point x and suppose further that f is continuous at x. If there exists a positive number r > 0 such that f is weakly increasing on (x − r, x] and weakly decreasing on [x, x + r), then f has a local maximum at x.