Search results
Results from the WOW.Com Content Network
In classical electromagnetism, Ampère's circuital law (not to be confused with Ampère's force law) [1] relates the circulation of a magnetic field around a closed loop to the electric current passing through the loop. James Clerk Maxwell derived it using hydrodynamics in his 1861 published paper "On Physical Lines of Force". [2]
A quad antenna is a self-resonant loop in a square shape; this one also includes a parasitic element.. Loop antennas may be in the shape of a circle, a square, or any other closed geometric shape that allows the total perimeter to be slightly more than one wavelength.
AN-SOF - A Windows simulation software for antennas in free space and above a lossy ground, microstrip patch antennas and printed circuit boards (PCBs). A radial wire ground screen is included and connections to imperfect ground are allowed. Not based on NEC. AutoEZ - An Excel application that works in conjunction with EZNEC v.5.0 & v.6.0 ...
Magnetic field (green) induced by a current-carrying wire winding (red) in a magnetic circuit consisting of an iron core C forming a closed loop with two air gaps G in it. In an analogy to an electric circuit, the winding acts analogously to an electric battery, providing the magnetizing field , the core pieces act like wires, and the gaps G act like resistors.
Radio-frequency (RF) engineering is a subset of electrical engineering involving the application of transmission line, waveguide, antenna, radar, and electromagnetic field principles to the design and application of devices that produce or use signals within the radio band, the frequency range of about 20 kHz up to 300 GHz.
In magnetostatics, the force of attraction or repulsion between two current-carrying wires (see first figure below) is often called Ampère's force law. The physical origin of this force is that each wire generates a magnetic field , following the Biot–Savart law , and the other wire experiences a magnetic force as a consequence, following ...
In three dimensions, the derivative has a special structure allowing the introduction of a cross product: = + = + from which it is easily seen that Gauss's law is the scalar part, the Ampère–Maxwell law is the vector part, Faraday's law is the pseudovector part, and Gauss's law for magnetism is the pseudoscalar part of the equation.
The covariant formulation of classical electromagnetism refers to ways of writing the laws of classical electromagnetism (in particular, Maxwell's equations and the Lorentz force) in a form that is manifestly invariant under Lorentz transformations, in the formalism of special relativity using rectilinear inertial coordinate systems.