Search results
Results from the WOW.Com Content Network
unstrict inequality signs (less-than or equals to sign and greater-than or equals to sign) 1670 (with the horizontal bar over the inequality sign, rather than below it) John Wallis: 1734 (with double horizontal bar below the inequality sign) Pierre Bouguer
Sometimes other equivalent versions of the test are used. In cases 1 and 2, the requirement that f xx f yy − f xy 2 is positive at (x, y) implies that f xx and f yy have the same sign there. Therefore, the second condition, that f xx be greater (or less) than zero, could equivalently be that f yy or tr(H) = f xx + f yy be greater (or less ...
If the body is at rest (v = 0), i.e. in its center-of-momentum frame (p = 0), we have E = E 0 and m = m 0; thus the energy–momentum relation and both forms of the mass–energy relation (mentioned above) all become the same. A more general form of relation holds for general relativity.
The division function takes a value of one when numerator and denominator are equal. Other ratios are compared to one by logarithms, often common logarithm using base 10. The ratio scale then segments by orders of magnitude used in science and technology, expressed in various units of measurement.
The same formula applies to octonions, with a zero real part and a norm equal to 1. These formulas are a direct generalization of Euler's identity, since i {\displaystyle i} and − i {\displaystyle -i} are the only complex numbers with a zero real part and a norm (absolute value) equal to 1.
The transform v of u is continuous in a small disc |z| ≤ r and harmonic everywhere in the interior except possibly 0. Let w be the harmonic function given by the Poisson integral on |z| ≤ r with the same boundary value g as v on |z| = r. Applying the maximum principle to v − w + ε log |z| on δ ≤ |z| ≤ r, it must be
Define e x as the value of the infinite series = =! = + +! +! +! + (Here n! denotes the factorial of n. One proof that e is irrational uses a special case of this formula.) Inverse of logarithm integral.
For any poset P there is a complete Boolean algebra B and a map e from P to B + (the non-zero elements of B) such that the image is dense, e(p)≤e(q) whenever p≤q, and e(p)e(q)=0 whenever p and q are incompatible. This Boolean algebra is unique up to isomorphism.