Search results
Results from the WOW.Com Content Network
The molar mass of atoms of an element is given by the relative atomic mass of the element multiplied by the molar mass constant, M u ≈ 1.000 000 × 10 −3 kg/mol ≈ 1 g/mol. For normal samples from Earth with typical isotope composition, the atomic weight can be approximated by the standard atomic weight [ 2 ] or the conventional atomic weight.
That is, in grams, the atomic weight of the element divided by the usual valence. [2] For example, the equivalent weight of oxygen is 16.0/2 = 8.0 grams. For acid–base reactions, the equivalent weight of an acid or base is the mass which supplies or reacts with one mole of hydrogen cations (H +).
Because a dalton, a unit commonly used to measure atomic mass, is exactly 1/12 of the mass of a carbon-12 atom, this definition of the mole entailed that the mass of one mole of a compound or element in grams was numerically equal to the average mass of one molecule or atom of the substance in daltons, and that the number of daltons in a gram ...
The molecular mass and relative molecular mass are distinct from but related to the molar mass. The molar mass is defined as the mass of a given substance divided by the amount of the substance, and is expressed in grams per mol (g/mol). That makes the molar mass an average of many particles or molecules (potentially containing different ...
The conversion to mass concentration ... The density of water is approximately 1000 g/L and its molar mass is 18.02 g/mol (or 1/18.02 = 0.055 mol/g). Therefore, the ...
Stoichiometry is not only used to balance chemical equations but also used in conversions, i.e., converting from grams to moles using molar mass as the conversion factor, or from grams to milliliters using density. For example, to find the amount of NaCl (sodium chloride) in 2.00 g, one would do the following:
As a consequence, the molar mass constant remains close to but no longer exactly 1 g/mol, meaning that the mass in grams of one mole of any substance remains nearly but no longer exactly numerically equal to its average molecular mass in daltons, [30] although the relative standard uncertainty of 4.5 × 10 −10 at the time of the redefinition ...
The atomic mass (relative isotopic mass) is defined as the mass of a single atom, which can only be one isotope (nuclide) at a time, and is not an abundance-weighted average, as in the case of relative atomic mass/atomic weight. The atomic mass or relative isotopic mass of each isotope and nuclide of a chemical element is, therefore, a number ...