Search results
Results from the WOW.Com Content Network
In probability theory, the central limit theorem (CLT) states that, under appropriate conditions, the distribution of a normalized version of the sample mean converges to a standard normal distribution. This holds even if the original variables themselves are not normally distributed. There are several versions of the CLT, each applying in the ...
The means and variances of directional quantities are all finite, so that the central limit theorem may be applied to the particular case of directional statistics. [2] This article will deal only with unit vectors in 2-dimensional space (R 2) but the method described can be extended to the general case.
In probability theory, the central limit theorem (CLT) states that, in many situations, when independent and identically distributed random variables are added, their properly normalized sum tends toward a normal distribution. This article gives two illustrations of this theorem.
In probability theory, Lindeberg's condition is a sufficient condition (and under certain conditions also a necessary condition) for the central limit theorem (CLT) to hold for a sequence of independent random variables.
The martingale central limit theorem generalizes this result for random variables to martingales, which are stochastic processes where the change in the value of the process from time t to time t + 1 has expectation zero, even conditioned on previous outcomes.
Comparison of probability density functions for the sum of n dice to illustrate the central limit theorem: Image title: Comparison of probability density functions, p(k) for the sum of n fair 6-sided dice to show their convergence to a normal distribution with increasing n, in accordance to the central limit theorem; illustrated by CMG Lee.
Central limit theorem — The triangle distribution often occurs as a result of adding two uniform random variables together. In other words, the triangle distribution is often (not always) the result of the first iteration of the central limit theorem summing process (i.e. =). In this sense, the triangle distribution can occasionally occur ...
The Markov chain central limit theorem can be guaranteed for functionals of general state space Markov chains under certain conditions. In particular, this can be done with a focus on Monte Carlo settings. An example of the application in a MCMC (Markov Chain Monte Carlo) setting is the following: Consider a simple hard spheres model on a grid.