Search results
Results from the WOW.Com Content Network
Viterbi path and Viterbi algorithm have become standard terms for the application of dynamic programming algorithms to maximization problems involving probabilities. [3] For example, in statistical parsing a dynamic programming algorithm can be used to discover the single most likely context-free derivation (parse) of a string, which is ...
In statistics, maximum likelihood estimation (MLE) is a method of estimating the parameters of an assumed probability distribution, given some observed data. This is achieved by maximizing a likelihood function so that, under the assumed statistical model , the observed data is most probable.
It is closely related to the method of maximum likelihood (ML) estimation, but employs an augmented optimization objective which incorporates a prior density over the quantity one wants to estimate. MAP estimation is therefore a regularization of maximum likelihood estimation, so is not a well-defined statistic of the Bayesian posterior ...
The secretary problem demonstrates a scenario involving optimal stopping theory [1] [2] that is studied extensively in the fields of applied probability, statistics, and decision theory. It is also known as the marriage problem , the sultan's dowry problem , the fussy suitor problem , the googol game , and the best choice problem .
These parameter-estimates are then used to determine the distribution of the latent variables in the next E step. It can be used, for example, to estimate a mixture of gaussians, or to solve the multiple linear regression problem. [2] EM clustering of Old Faithful eruption data. The random initial model (which, due to the different scales of ...
The balls into bins (or balanced allocations) problem is a classic problem in probability theory that has many applications in computer science. The problem involves m balls and n boxes (or "bins"). Each time, a single ball is placed into one of the bins.
Bayesian optimization of a function (black) with Gaussian processes (purple). Three acquisition functions (blue) are shown at the bottom. [19]Probabilistic numerics have also been studied for mathematical optimization, which consist of finding the minimum or maximum of some objective function given (possibly noisy or indirect) evaluations of that function at a set of points.
The following algorithm using that relaxation is an expected (1-1/e)-approximation: [10] Solve the linear program L and obtain a solution O; Set variable x to be true with probability y x where y x is the value given in O. This algorithm can also be derandomized using the method of conditional probabilities.