Search results
Results from the WOW.Com Content Network
Nucleic acid metabolism is a collective term that refers to the variety of chemical reactions by which nucleic acids (DNA and/or RNA) are either synthesized or degraded. Nucleic acids are polymers (so-called "biopolymers") made up of a variety of monomers called nucleotides .
Biosynthesis, i.e., chemical synthesis occurring in biological contexts, is a term most often referring to multi-step, enzyme-catalyzed processes where chemical substances absorbed as nutrients (or previously converted through biosynthesis) serve as enzyme substrates, with conversion by the living organism either into simpler or more complex ...
Synthetic nucleotides can be used to expand the genetic alphabet and allow specific modification of DNA sites. Even just a third base pair would expand the number of amino acids that can be encoded by DNA from the existing 20 amino acids to a possible 172. [8] Hachimoji DNA is built from eight nucleotide letters, forming four possible base ...
The generation of reducing equivalents, in the form of NADPH, used in reductive biosynthesis reactions within cells (e.g. fatty acid synthesis). Production of ribose 5-phosphate (R5P), used in the synthesis of nucleotides and nucleic acids. Production of erythrose 4-phosphate (E4P) used in the synthesis of aromatic amino acids.
A salvage pathway is a pathway in which a biological product is produced from intermediates in the degradative pathway of its own or a similar substance. The term often refers to nucleotide salvage in particular, in which nucleotides (purine and pyrimidine) are synthesized from intermediates in their degradative pathway.
Metabolism (/ m ə ˈ t æ b ə l ɪ z ə m /, from Greek: μεταβολή metabolē, "change") is the set of life-sustaining chemical reactions in organisms.The three main functions of metabolism are: the conversion of the energy in food to energy available to run cellular processes; the conversion of food to building blocks of proteins, lipids, nucleic acids, and some carbohydrates; and the ...
The nitrogenous bases of each strand of a nucleic acid will form hydrogen bonds with certain other nitrogenous bases in a complementary strand of nucleic acid. Adenine binds with thymine and uracil, thymine binds only with adenine, and cytosine and guanine can bind only with one another.
Both types of pentoses in DNA and RNA are in their β-furanose (closed five-membered ring) form and they define the identity of a nucleic acid. DNA is defined by containing 2'-deoxy-ribose nucleic acid while RNA is defined by containing ribose nucleic acid. [1] In some occasions, DNA and RNA may contain some minor bases.