Search results
Results from the WOW.Com Content Network
Standard solutions are generally prepared by dissolving a solute of known mass into a solvent to a precise volume, or by diluting a solution of known concentration with more solvent. [1] A standard solution ideally has a high degree of purity and is stable enough that the concentration can be accurately measured after a long shelf time. [2]
The first clear instance of the preparation of hydrochloric acid appears in the writings of Della Porta, (1589 and 1608), Libavius (1597), pseudo-Basil (1604), van Helmont (1646) and Glauber (1648). Less convincing earlier references are found in the Plichto of Rosetti (1540) and in Agricola (1558). As for the first practical method of ...
Sample containing nitrite ions is first neutralized and then treated with dilute hydrochloric acid at 0 - 5 °C to give nitrous acid. Then an excess but fixed volume of sulfanilamide and N-(1-naphthyl)ethylenediamine dihydrochloride solution is added.
Small amounts of hydrogen chloride for laboratory use can be generated in an HCl generator by dehydrating hydrochloric acid with either sulfuric acid or anhydrous calcium chloride. Alternatively, HCl can be generated by the reaction of sulfuric acid with sodium chloride: [17] NaCl + H 2 SO 4 → NaHSO 4 + HCl↑. This reaction occurs at room ...
If the concentration of a sulfuric acid solution is c(H 2 SO 4) = 1 mol/L, then its normality is 2 N. It can also be called a "2 normal" solution. It can also be called a "2 normal" solution. Similarly, for a solution with c (H 3 PO 4 ) = 1 mol/L, the normality is 3 N because phosphoric acid contains 3 acidic H atoms.
In an aqueous solution the hydrogen ions (H +) and hydroxide ions (OH −) are in Arrhenius balance ([H +] [OH −] = K w = 1 x 10 −14 at 298 K). Acids and bases are aqueous solutions, as part of their Arrhenius definitions. [1] An example of an Arrhenius acid is hydrogen chloride (HCl) because of its dissociation of the hydrogen ion when ...
Molar concentration or molarity is most commonly expressed in units of moles of solute per litre of solution. [1] For use in broader applications, it is defined as amount of substance of solute per unit volume of solution, or per unit volume available to the species, represented by lowercase : [2]
Another method for producing small amounts of chlorine gas in a lab is by adding concentrated hydrochloric acid (typically about 5M) to sodium hypochlorite or sodium chlorate solution. Potassium permanganate can be used to generate chlorine gas when concentrated hydrochloric acid is added to it: 2KMn04 + 16HCl —> 2KCl + 2MnCl2 + 8H2O + 5Cl2