Search results
Results from the WOW.Com Content Network
CLP problems generally have 4 solutions. The solution of this special case is similar to that of the CPP Apollonius solution. Draw a circle centered on the given point P; since the solution circle must pass through P, inversion in this [clarification needed] circle transforms the solution circle
Determination of a circle, that intersects four circles by the same angle. [2] Solving the Problem of Apollonius; Construction of the Malfatti circles: [3] For a given triangle determine three circles, which touch each other and two sides of the triangle each. Spherical version of Malfatti's problem: [4] The triangle is a spherical one.
Let a pair of solution circles be denoted as C A and C B (the pink circles in Figure 6), and let their tangent points with the three given circles be denoted as A 1, A 2, A 3, and B 1, B 2, B 3, respectively. Gergonne's solution aims to locate these six points, and thus solve for the two solution circles.
The number of points (n), chords (c) and regions (r G) for first 6 terms of Moser's circle problem. In geometry, the problem of dividing a circle into areas by means of an inscribed polygon with n sides in such a way as to maximise the number of areas created by the edges and diagonals, sometimes called Moser's circle problem (named after Leo Moser), has a solution by an inductive method.
Circle packing in a circle is a two-dimensional packing problem with the objective of packing unit circles into the smallest possible larger circle. Table of solutions, 1 ≤ n ≤ 20 [ edit ]
Trigonometric ratios can also be represented using the unit circle, which is the circle of radius 1 centered at the origin in the plane. [37] In this setting, the terminal side of an angle A placed in standard position will intersect the unit circle in a point (x,y), where x = cos A {\displaystyle x=\cos A} and y = sin A {\displaystyle ...
An inversion in their tangent point with respect to a circle of appropriate radius transforms the two touching given circles into two parallel lines, and the third given circle into another circle. Thus, the solutions may be found by sliding a circle of constant radius between two parallel lines until it contacts the transformed third circle.
Circle packing in a square is a packing problem in recreational mathematics where the aim is to pack n unit circles into the smallest possible square. Equivalently, the problem is to arrange n points in a unit square in order to maximize the minimal separation, d n , between points. [ 1 ]