Search results
Results from the WOW.Com Content Network
Fusion ignition is the point at which a nuclear fusion reaction becomes self-sustaining. This occurs when the energy being given off by the reaction heats the fuel mass more rapidly than it cools. In other words, fusion ignition is the point at which the increasing self-heating of the nuclear fusion removes the need for external heating. [ 1 ]
Fusion is the rate of fusion energy produced by the plasma; Number density is the density in particles per unit volume of the respective fuels (or just one fuel, in some cases) Cross section is a measure of the probability of a fusion event, which is based on the plasma temperature; Energy per reaction is the energy released in each fusion reaction
Nuclear fusion–fission hybrid (hybrid nuclear power) is a proposed means of generating power by use of a combination of nuclear fusion and fission processes. The concept dates to the 1950s, and was briefly advocated by Hans Bethe during the 1970s, but largely remained unexplored until a revival of interest in 2009, due to the delays in the ...
The multiplication factor, k, is defined as (see nuclear chain reaction): k = number of neutrons in one generation / number of neutrons in preceding generation . If k is greater than 1, the chain reaction is supercritical, and the neutron population will grow exponentially.
A fusion energy gain factor, usually expressed with the symbol Q, is the ratio of fusion power produced in a nuclear fusion reactor to the power required to maintain the plasma in steady state. The condition of Q = 1, when the power being released by the fusion reactions is equal to the required heating power, is referred to as breakeven , or ...
If new binding energy is available when light nuclei fuse (nuclear fusion), or when heavy nuclei split (nuclear fission), either process can result in release of this binding energy. This energy may be made available as nuclear energy and can be used to produce electricity, as in nuclear power, or in a nuclear weapon.
Nuclear fusion occurs when nuclei, protons and neutrons, come close enough together for the nuclear force to pull them together into a single larger nucleus. Opposing this action is the electrostatic force , which causes electrically charged particles with like charges, like protons, to repel each other.
Gamow [3] first solved the one-dimensional case of quantum tunneling using the WKB approximation.Considering a wave function of a particle of mass m, we take area 1 to be where a wave is emitted, area 2 the potential barrier which has height V and width l (at < <), and area 3 its other side, where the wave is arriving, partly transmitted and partly reflected.