enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Lilliefors test - Wikipedia

    en.wikipedia.org/wiki/Lilliefors_test

    Lilliefors test is a normality test based on the Kolmogorov–Smirnov test. It is used to test the null hypothesis that data come from a normally distributed population, when the null hypothesis does not specify which normal distribution; i.e., it does not specify the expected value and variance of the distribution. [ 1 ]

  3. Šidák correction - Wikipedia

    en.wikipedia.org/wiki/Šidák_correction

    The Šidák correction is derived by assuming that the individual tests are independent. Let the significance threshold for each test be α 1 {\displaystyle \alpha _{1}} ; then the probability that at least one of the tests is significant under this threshold is (1 - the probability that none of them are significant).

  4. Normality test - Wikipedia

    en.wikipedia.org/wiki/Normality_test

    Simple back-of-the-envelope test takes the sample maximum and minimum and computes their z-score, or more properly t-statistic (number of sample standard deviations that a sample is above or below the sample mean), and compares it to the 68–95–99.7 rule: if one has a 3σ event (properly, a 3s event) and substantially fewer than 300 samples, or a 4s event and substantially fewer than 15,000 ...

  5. Bonferroni correction - Wikipedia

    en.wikipedia.org/wiki/Bonferroni_correction

    The Bonferroni correction can also be applied as a p-value adjustment: Using that approach, instead of adjusting the alpha level, each p-value is multiplied by the number of tests (with adjusted p-values that exceed 1 then being reduced to 1), and the alpha level is left unchanged.

  6. Multiple comparisons problem - Wikipedia

    en.wikipedia.org/wiki/Multiple_comparisons_problem

    Although the 30 samples were all simulated under the null, one of the resulting p-values is small enough to produce a false rejection at the typical level 0.05 in the absence of correction. Multiple comparisons arise when a statistical analysis involves multiple simultaneous statistical tests, each of which has a potential to produce a "discovery".

  7. Goodness of fit - Wikipedia

    en.wikipedia.org/wiki/Goodness_of_fit

    The goodness of fit of a statistical model describes how well it fits a set of observations. Measures of goodness of fit typically summarize the discrepancy between observed values and the values expected under the model in question.

  8. Yates's correction for continuity - Wikipedia

    en.wikipedia.org/wiki/Yates's_correction_for...

    Yates's correction should always be applied, as it will tend to improve the accuracy of the p-value obtained. [ citation needed ] However, in situations with large sample sizes, using the correction will have little effect on the value of the test statistic, and hence the p-value.

  9. D'Agostino's K-squared test - Wikipedia

    en.wikipedia.org/wiki/D'Agostino's_K-squared_test

    In statistics, D'Agostino's K 2 test, named for Ralph D'Agostino, is a goodness-of-fit measure of departure from normality, that is the test aims to gauge the compatibility of given data with the null hypothesis that the data is a realization of independent, identically distributed Gaussian random variables.