enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Euclidean tilings by convex regular polygons - Wikipedia

    en.wikipedia.org/wiki/Euclidean_tilings_by...

    For example: 3 6; 3 6; 3 4.6, tells us there are 3 vertices with 2 different vertex types, so this tiling would be classed as a ‘3-uniform (2-vertex types)’ tiling. Broken down, 3 6 ; 3 6 (both of different transitivity class), or (3 6 ) 2 , tells us that there are 2 vertices (denoted by the superscript 2), each with 6 equilateral 3-sided ...

  3. List of Euclidean uniform tilings - Wikipedia

    en.wikipedia.org/wiki/List_of_euclidean_uniform...

    An example of uniform tiling in the Archeological Museum of Seville, Sevilla, Spain: rhombitrihexagonal tiling Regular tilings and their duals drawn by Max Brückner in Vielecke und Vielflache (1900) This table shows the 11 convex uniform tilings (regular and semiregular) of the Euclidean plane , and their dual tilings.

  4. Tessellation - Wikipedia

    en.wikipedia.org/wiki/Tessellation

    The Hirschhorn tiling, published by Michael D. Hirschhorn and D. C. Hunt in 1985, is a pentagon tiling using irregular pentagons: regular pentagons cannot tile the Euclidean plane as the internal angle of a regular pentagon, ⁠ 3 π / 5 ⁠, is not a divisor of 2 π.

  5. 3-4-3-12 tiling - Wikipedia

    en.wikipedia.org/wiki/3-4-3-12_tiling

    The 3.12.12 vertex figure alone generates a truncated hexagonal tiling, while the 3.4.3.12 only exists in this 2-uniform tiling. There are 2 3-uniform tilings that contain both of these vertex figures among one more. It has square symmetry, p4m, [4,4], (*442). It is also called a demiregular tiling by some authors.

  6. Lists of uniform tilings on the sphere, plane, and hyperbolic ...

    en.wikipedia.org/wiki/Lists_of_uniform_tilings...

    There are 4 symmetry classes of reflection on the sphere, and three in the Euclidean plane. A few of the infinitely many such patterns in the hyperbolic plane are also listed. (Increasing any of the numbers defining a hyperbolic or Euclidean tiling makes another hyperbolic tiling.) Point groups:

  7. Uniform tiling - Wikipedia

    en.wikipedia.org/wiki/Uniform_tiling

    In geometry, a uniform tiling is a tessellation of the plane by regular polygon faces with the restriction of being vertex-transitive. Uniform tilings can exist in both the Euclidean plane and hyperbolic plane. Uniform tilings are related to the finite uniform polyhedra; these can be considered uniform tilings of the sphere.

  8. Square tiling - Wikipedia

    en.wikipedia.org/wiki/Square_tiling

    In geometry, the square tiling, square tessellation or square grid is a regular tiling of the Euclidean plane. It has Schläfli symbol of {4,4}, meaning it has 4 squares around every vertex. Conway called it a quadrille. The internal angle of the square is 90 degrees so four squares at a point make a full 360

  9. Kisrhombille - Wikipedia

    en.wikipedia.org/wiki/Kisrhombille

    Euclidean kisrhombille tiling. In geometry, a kisrhombille is a uniform tiling of rhombic faces, divided by central points into four triangles. Examples: 3-6 kisrhombille – Euclidean plane; 3-7 kisrhombille – hyperbolic plane; 3-8 kisrhombille – hyperbolic plane; 4-5 kisrhombille – hyperbolic plane