Search results
Results from the WOW.Com Content Network
Slider crank mechanisms of a steam engine with a crosshead linking the piston and the crank. Crank slider mechanisms with 0 and 1.25 eccentricity. Coupler curves of a slider crank. A slider-crank linkage is a four-link mechanism with three revolute joints and one prismatic (sliding) joint. [1]
A crosshead as part of a reciprocating piston and slider-crank linkage mechanism. Cylindrical trunk guide Hudswell Clarke Nunlow; crosshead and two slide bars. In mechanical engineering, a crosshead [1] is a mechanical joint used as part of the slider-crank linkages of long stroke reciprocating engines (either internal combustion or steam) and reciprocating compressors [2] to eliminate ...
It transmits the motion it receives from the steering box into the drag (or center) link, causing it to move left or right to turn the wheels in the appropriate direction. The idler arm is attached between the opposite side of the center link from the Pitman arm and the vehicle's frame to hold the center or drag link at the proper height.
A steering linkage is the part of an automotive steering system that connects to the front wheels. [1]The steering linkage which connects the steering gearbox to the front wheels consists of a number of rods.
Connecting rod and piston from a car engine. A connecting rod for an internal combustion engine consists of the 'big end', 'rod' and 'small end'. The small end attaches to the gudgeon pin (also called 'piston pin' or 'wrist pin' in the U.S.), which allows for rotation between the connecting rod and the piston.
In this case, a rocking couple is caused by one connecting rod swinging left (during the top half of its crank rotation) while the other is swinging right (during the bottom half), resulting in a force to the left at the top of the engine and a force to the right at the bottom of the engine.
A crossflow head gives better performance than a Reverse-flow cylinder head (though not as good as a uniflow), but the popular explanation put forward for this — that the gases do not have to change direction and hence are moved into and out of the cylinder more efficiently — is a simplification since there is no continuous flow because of valve opening and closing.
This engine was the first to locate one balance shaft higher than the other, to counteract the second order rolling couple (i.e. about the crankshaft axis) due to the torque exerted by the inertia caused by increases and decreases in engine speed. [6] [7] In a flat-four engine, the forces are cancelled out by the pistons moving in opposite ...