Search results
Results from the WOW.Com Content Network
In graph theory, the girth of an undirected graph is the length of a shortest cycle contained in the graph. [1] If the graph does not contain any cycles (that is, it is a forest), its girth is defined to be infinity. [2] For example, a 4-cycle (square) has girth 4. A grid has girth 4 as well, and a triangular mesh has girth 3.
[1] [2] A Euclidean graph is uniformly discrete if there is a minimal distance between any two vertices. Periodic graphs are closely related to tessellations of space (or honeycombs) and the geometry of their symmetry groups, hence to geometric group theory, as well as to discrete geometry and the theory of polytopes, and similar areas.
In graph theory, a branch of mathematics, a periodic graph with respect to an operator F on graphs is one for which there exists an integer n > 0 such that F n (G) is isomorphic to G. [1] For example, every graph is periodic with respect to the complementation operator , whereas only complete graphs are periodic with respect to the operator ...
Circle with square and octagon inscribed, showing area gap. Suppose that the area C enclosed by the circle is greater than the area T = cr/2 of the triangle. Let E denote the excess amount. Inscribe a square in the circle, so that its four corners lie on the circle. Between the square and the circle are four segments.
Gauss's circle problem asks how many points there are inside this circle of the form (,) where and are both integers. Since the equation of this circle is given in Cartesian coordinates by x 2 + y 2 = r 2 {\displaystyle x^{2}+y^{2}=r^{2}} , the question is equivalently asking how many pairs of integers m and n there are such that
5. A chord of a circle is a line segment connecting two points on the circle; the intersection graph of a collection of chords is called a circle graph. chromatic Having to do with coloring; see color. Chromatic graph theory is the theory of graph coloring. The chromatic number χ(G) is the minimum number of colors needed in a proper coloring of G.
The cube of every connected graph necessarily contains a Hamiltonian cycle. [10] It is not necessarily the case that the square of a connected graph is Hamiltonian, and it is NP-complete to determine whether the square is Hamiltonian. [11] Nevertheless, by Fleischner's theorem, the square of a 2-vertex-connected graph is always Hamiltonian. [12]
An aperiodic graph. The cycles in this graph have lengths 5 and 6; therefore, there is no k > 1 that divides all cycle lengths. A strongly connected graph with period three. In the mathematical area of graph theory, a directed graph is said to be aperiodic if there is no integer k > 1 that divides the length of every cycle of the graph.