enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Coplanarity - Wikipedia

    en.wikipedia.org/wiki/Coplanarity

    In geometry, a set of points in space are coplanar if there exists a geometric plane that contains them all. For example, three points are always coplanar, and if the points are distinct and non-collinear, the plane they determine is unique. However, a set of four or more distinct points will, in general, not lie in a single plane.

  3. Parallel (geometry) - Wikipedia

    en.wikipedia.org/wiki/Parallel_(geometry)

    the distance between the two lines can be found by locating two points (one on each line) that lie on a common perpendicular to the parallel lines and calculating the distance between them. Since the lines have slope m, a common perpendicular would have slope −1/m and we can take the line with equation y = −x/m as a common perpendicular ...

  4. Perpendicular - Wikipedia

    en.wikipedia.org/wiki/Perpendicular

    For this reason, we may speak of two lines as being perpendicular (to each other) without specifying an order. A great example of perpendicularity can be seen in any compass, note the cardinal points; North, East, South, West (NESW) The line N-S is perpendicular to the line W-E and the angles N-E, E-S, S-W and W-N are all 90° to one another.

  5. Line (geometry) - Wikipedia

    en.wikipedia.org/wiki/Line_(geometry)

    Here, p is the (positive) length of the line segment perpendicular to the line and delimited by the origin and the line, and is the (oriented) angle from the x-axis to this segment. It may be useful to express the equation in terms of the angle α = φ + π / 2 {\displaystyle \alpha =\varphi +\pi /2} between the x -axis and the line.

  6. Transversal (geometry) - Wikipedia

    en.wikipedia.org/wiki/Transversal_(geometry)

    Second, if a transversal intersects two lines so that interior angles on the same side of the transversal are supplementary, then the lines are parallel. These follow from the previous proposition by applying the fact that opposite angles of intersecting lines are equal (Prop. 15) and that adjacent angles on a line are supplementary (Prop. 13).

  7. Parallel postulate - Wikipedia

    en.wikipedia.org/wiki/Parallel_postulate

    Given a line a and two distinct intersecting lines m and n, each different from a, there exists a line g which intersects a and m, but not n. The splitting of the parallel postulate into the conjunction of these incidence-geometric axioms is possible only in the presence of absolute geometry .

  8. Arrangement of lines - Wikipedia

    en.wikipedia.org/wiki/Arrangement_of_lines

    In a 1981 paper, N. G. de Bruijn investigated special cases of this construction in which the line arrangement consists of sets of equally spaced parallel lines. For two perpendicular families of parallel lines this construction gives the square tiling of the plane, and for three families of lines at 120-degree angles from each other ...

  9. Plücker coordinates - Wikipedia

    en.wikipedia.org/wiki/Plücker_coordinates

    Alternatively, a line can be described as the intersection of two planes. Let L be a line contained in distinct planes a and b with homogeneous coefficients (a 0 : a 1 : a 2 : a 3) and (b 0 : b 1 : b 2 : b 3), respectively. (The first plane equation is =, for example.)