enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Sobolev inequality - Wikipedia

    en.wikipedia.org/wiki/Sobolev_inequality

    Sobolev's original proof of the Sobolev embedding theorem relied on the following, sometimes known as the Hardy–Littlewood–Sobolev fractional integration theorem. An equivalent statement is known as the Sobolev lemma in (Aubin 1982, Chapter 2). A proof is in (Stein 1970, Chapter V, §1.3). Let 0 < α < n and 1 < p < q < ∞.

  3. Gagliardo–Nirenberg interpolation inequality - Wikipedia

    en.wikipedia.org/wiki/Gagliardo–Nirenberg...

    In mathematics, and in particular in mathematical analysis, the Gagliardo–Nirenberg interpolation inequality is a result in the theory of Sobolev spaces that relates the -norms of different weak derivatives of a function through an interpolation inequality.

  4. Sobolev mapping - Wikipedia

    en.wikipedia.org/wiki/Sobolev_mapping

    In mathematics, a Sobolev mapping is a mapping between manifolds which has smoothness in some sense. Sobolev mappings appear naturally in manifold-constrained problems in the calculus of variations and partial differential equations , including the theory of harmonic maps .

  5. Poincaré inequality - Wikipedia

    en.wikipedia.org/wiki/Poincaré_inequality

    In mathematics, the Poincaré inequality [1] is a result in the theory of Sobolev spaces, named after the French mathematician Henri Poincaré. The inequality allows one to obtain bounds on a function using bounds on its derivatives and the geometry of its domain of definition.

  6. Hilbert manifold - Wikipedia

    en.wikipedia.org/wiki/Hilbert_manifold

    In mathematics, a Hilbert manifold is a manifold modeled on Hilbert spaces. Thus it is a separable Hausdorff space in which each point has a neighbourhood homeomorphic to an infinite dimensional Hilbert space. The concept of a Hilbert manifold provides a possibility of extending the theory of manifolds to infinite-dimensional setting.

  7. Trace operator - Wikipedia

    en.wikipedia.org/wiki/Trace_operator

    The trace operator can be defined for functions in the Sobolev spaces , with <, see the section below for possible extensions of the trace to other spaces. Let Ω ⊂ R n {\textstyle \Omega \subset \mathbb {R} ^{n}} for n ∈ N {\textstyle n\in \mathbb {N} } be a bounded domain with Lipschitz boundary.

  8. The age of the city has not ended–but its inequality is ...

    www.aol.com/finance/age-city-not-ended...

    For premium support please call: 800-290-4726 more ways to reach us

  9. Rellich–Kondrachov theorem - Wikipedia

    en.wikipedia.org/wiki/Rellich–Kondrachov_theorem

    A First Course in Sobolev Spaces. Graduate Studies in Mathematics. 105. American Mathematical Society. pp. xvi+607. ISBN 978-0-8218-4768-8. MR 2527916. Zbl 1180.46001; Rellich, Franz (24 January 1930). "Ein Satz über mittlere Konvergenz". Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse (in ...