Search results
Results from the WOW.Com Content Network
Manganese is an essential human dietary element. It is present as a coenzyme in several biological processes, which include macronutrient metabolism, bone formation, and free radical defense systems. It is a critical component in dozens of proteins and enzymes. [3] The human body contains about 12 mg of manganese, mostly in the bones.
Manganese precipitates in soils in the form of manganese-iron oxide minerals, which promote nutrient and organic matter accumulation due to their high surface area. Manganese is the tenth most abundant metal in the Earth's crust, making up approximately 0.1% of the total composition, or about 0.019 mol kg −1, which is found mostly in the ...
Manganese is an essential human dietary element and is present as a coenzyme in several biological processes, which include macronutrient metabolism, bone formation, and free radical defense systems. Manganese is a critical component in dozens of proteins and enzymes. [8] The human body contains about 12 mg of manganese, mostly in the bones.
In 2007 his team showed that high intracellular levels of manganese(II) in D. radiodurans protect proteins from being oxidized by radiation, and they proposed the idea that "protein, rather than DNA, is the principal target of the biological action of [ionizing radiation] in sensitive bacteria, and extreme resistance in Mn-accumulating bacteria ...
Manganese is a component of some enzymes (such as arginase) and stimulates the development and activity of other enzymes. Manganese superoxide dismutase (MnSOD) is the principal antioxidant in mitochondria. Several enzymes activated by manganese contribute to the metabolism of carbohydrates, amino acids, and cholesterol. [2]
Because of zinc's antibiotic nature, it is often used in many drugs against bacterial infections in humans. Inversely, due to the bacterial nature of mitochondria, zinc antibiotics are also lethal to mitochondria and results in cell death at high concentrations. [8] Zinc is also used in a number of transcription factors, proteins and enzymes.
The temperature and pH of saliva makes it conducive for bacteria to survive in the oral cavity. Bacteria in the oral cavity include Streptococcus mutans, Porphyromonas gingivalis, and Staphylococcus. [15] S. mutans is the main component of the oral microbiota. [15] A healthy oral microbiome decreases oral infections and promotes a healthy gut ...
For example, cyanobacteria and many purple sulfur bacteria can be photolithoautotrophic, using light for energy, H 2 O or sulfide as electron/hydrogen donors, and CO 2 as carbon source, whereas green non-sulfur bacteria can be photoorganoheterotrophic, using organic molecules as both electron/hydrogen donors and carbon sources.