Search results
Results from the WOW.Com Content Network
The non-orientable genus, demigenus, or Euler genus of a connected, non-orientable closed surface is a positive integer representing the number of cross-caps attached to a sphere. Alternatively, it can be defined for a closed surface in terms of the Euler characteristic χ, via the relationship χ = 2 − k , where k is the non-orientable genus.
The genus-degree formula for plane curves can be deduced from the adjunction formula. [2] Let C ⊂ P 2 be a smooth plane curve of degree d and genus g. Let H be the class of a hyperplane in P 2, that is, the class of a line. The canonical class of P 2 is −3H.
A two-dimensional representation of the Klein bottle immersed in three-dimensional space. In mathematics, the Klein bottle (/ ˈ k l aɪ n /) is an example of a non-orientable surface; that is, informally, a one-sided surface which, if traveled upon, could be followed back to the point of origin while flipping the traveler upside down.
The curve has genus one (genus formula); in particular, it is not isomorphic to the projective line P 1, which has genus zero. Using genus to distinguish curves is very basic: in fact, the genus is the first invariant one uses to classify curves (see also the construction of moduli of algebraic curves).
This is a list of useful examples in general topology, a field of mathematics. Alexandrov topology; Cantor space; Co-kappa topology Cocountable topology; Cofinite topology; Compact-open topology; Compactification; Discrete topology; Double-pointed cofinite topology; Extended real number line; Finite topological space; Hawaiian earring; Hilbert cube
1.2 Curves of genus one. 1.3 Curves with genus greater than one. 1.4 Curve families with variable genus. 2 Transcendental curves. Toggle Transcendental curves subsection.
Since these parameterizing functions are doubly periodic, the elliptic curve can be identified with a period parallelogram with the sides glued together i.e. a torus. So the genus of an elliptic curve is 1. The genus–degree formula is a generalization of this fact to higher genus curves. The basic idea would be to use higher degree equations.
The most common examples are the curves X(N), X 0 (N), and X 1 (N) associated with the subgroups Γ(N), Γ 0 (N), and Γ 1 (N). The modular curve X(5) has genus 0: it is the Riemann sphere with 12 cusps located at the vertices of a regular icosahedron. The covering X(5) → X(1) is realized by the action of the icosahedral group on the Riemann ...