Search results
Results from the WOW.Com Content Network
Recognized effects of higher acute radiation doses are described in more detail in the article on radiation poisoning.Although the International System of Units (SI) defines the sievert (Sv) as the unit of radiation dose equivalent, chronic radiation levels and standards are still often given in units of millirems (mrem), where 1 mrem equals 1/1,000 of a rem and 1 rem equals 0.01 Sv.
The average radiation dose from an abdominal X-ray is 0.7 millisieverts (0.0007 Sv), that from an abdominal CT scan is 8 mSv, that from a pelvic CT scan is 6 mGy, and that from a selective CT scan of the abdomen and the pelvis is 14 mGy. [7]
W R is the radiation weighting factor defined by regulation. Thus for example, an absorbed dose of 1 Gy by alpha particles will lead to an equivalent dose of 20 Sv, and an equivalent dose of radiation is estimated to have the same biological effect as an equal amount of absorbed dose of gamma rays, which is given a weighting factor of 1.
The radiation exposure from consuming a banana is approximately 1% of the average daily exposure to radiation, which is 100 banana equivalent doses (BED). The maximum permitted radiation leakage for a nuclear power plant is equivalent to 2,500 BED (250 μSv) per year, while a chest CT scan delivers 70,000 BED (7 mSv).
The banana equivalent dose is sometimes used in science communication to visualize different levels of ionizing radiation. The collective radiation background dose for natural sources in Europe is about 500,000 man-Sieverts per year. The total dose from Chernobyl is estimated at 80,000 man-sieverts, or roughly 1/6 as much. [1]
The rep has variously been defined as 83 or 93 ergs per gram of tissue (8.3/9.3 mGy) [13] or per cc of tissue. [14] In 1953 the ICRU recommended the rad, equal to 100 erg/g as a new unit of absorbed radiation, [15] but then promoted a switch to the gray in the 1970s.
Background radiation level is widely used in radiological health fields as a standard for setting exposure limits. [1] Presumably, a dose of radiation which is equivalent to what a person would receive in a few days of ordinary life will not increase their rate of disease measurably.
The roentgen or röntgen (/ ˈ r ɛ n t ɡ ə n,-dʒ ə n, ˈ r ʌ n t-/; [2] symbol R) is a legacy unit of measurement for the exposure of X-rays and gamma rays, and is defined as the electric charge freed by such radiation in a specified volume of air divided by the mass of that air (statcoulomb per kilogram).