Search results
Results from the WOW.Com Content Network
While periodic travelling waves have been known as solutions of the wave equation since the 18th century, their study in nonlinear systems began in the 1970s. A key early research paper was that of Nancy Kopell and Lou Howard [1] which proved several fundamental results on periodic travelling waves in reaction–diffusion equations.
Periodic waves oscillate repeatedly about an equilibrium (resting) value at some frequency. When the entire waveform moves in one direction, it is said to be a travelling wave; by contrast, a pair of superimposed periodic waves traveling in opposite directions makes a standing wave. In a standing wave, the amplitude of vibration has nulls at ...
A periodic function, also called a periodic waveform (or simply periodic wave), is a function that repeats its values at regular intervals or periods. The repeatable part of the function or waveform is called a cycle . [ 1 ]
A Bloch wave function (bottom) can be broken up into the product of a periodic function (top) and a plane-wave (center). The left side and right side represent the same Bloch state broken up in two different ways, involving the wave vector k 1 (left) or k 2 (right). The difference (k 1 − k 2) is a reciprocal lattice vector. In all plots, blue ...
In physics and mathematics, wavelength or spatial period of a wave or periodic function is the distance over which the wave's shape repeats. [ 1 ] [ 2 ] In other words, it is the distance between consecutive corresponding points of the same phase on the wave, such as two adjacent crests, troughs, or zero crossings .
In physics, acoustics, and telecommunications, a harmonic is a sinusoidal wave with a frequency that is a positive integer multiple of the fundamental frequency of a periodic signal. The fundamental frequency is also called the 1st harmonic; the other harmonics are known as higher harmonics.
It is used as the starting point for subtractive synthesis, as a sawtooth wave of constant period contains odd and even harmonics that decrease at −6 dB/octave. The Fourier series describes the decomposition of periodic waveforms, such that any periodic waveform can be formed by the sum of a (possibly infinite) set of fundamental and harmonic ...
Polarization (waves) Coherence (physics), the quality of a wave to display a well defined phase relationship in different regions of its domain of definition; Hilbert transform, a method of changing phase by 90° Reflection phase shift, a phase change that happens when a wave is reflected off of a boundary from fast medium to slow medium