enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. De Morgan's laws - Wikipedia

    en.wikipedia.org/wiki/De_Morgan's_laws

    De Morgan's laws represented with Venn diagrams.In each case, the resultant set is the set of all points in any shade of blue. In propositional logic and Boolean algebra, De Morgan's laws, [1] [2] [3] also known as De Morgan's theorem, [4] are a pair of transformation rules that are both valid rules of inference.

  3. Associative property - Wikipedia

    en.wikipedia.org/wiki/Associative_property

    An example where this does not work is the logical biconditional ↔. It is associative; thus, A ↔ (BC) is equivalent to (A ↔ B) ↔ C, but A ↔ BC most commonly means (A ↔ B) and (BC), which is not equivalent.

  4. Proof of impossibility - Wikipedia

    en.wikipedia.org/wiki/Proof_of_impossibility

    One of the widely used types of impossibility proof is proof by contradiction.In this type of proof, it is shown that if a proposition, such as a solution to a particular class of equations, is assumed to hold, then via deduction two mutually contradictory things can be shown to hold, such as a number being both even and odd or both negative and positive.

  5. List of set identities and relations - Wikipedia

    en.wikipedia.org/wiki/List_of_set_identities_and...

    So for example, would mean () since it would be associated with the logical statement = and similarly, would mean () since it would be associated with = (). Sometimes, set complement (subtraction) ∖ {\displaystyle \,\setminus \,} is also associated with logical complement (not) ¬ , {\displaystyle \,\lnot ,\,} in which case it will have the ...

  6. Intuitionistic logic - Wikipedia

    en.wikipedia.org/wiki/Intuitionistic_logic

    The use of constructivist logics in general has been a controversial topic among mathematicians and philosophers (see, for example, the Brouwer–Hilbert controversy). A common objection to their use is the above-cited lack of two central rules of classical logic, the law of excluded middle and double negation elimination.

  7. Reductio ad absurdum - Wikipedia

    en.wikipedia.org/wiki/Reductio_ad_absurdum

    Reductio ad absurdum, painting by John Pettie exhibited at the Royal Academy in 1884. In logic, reductio ad absurdum (Latin for "reduction to absurdity"), also known as argumentum ad absurdum (Latin for "argument to absurdity") or apagogical arguments, is the form of argument that attempts to establish a claim by showing that the opposite scenario would lead to absurdity or contradiction.

  8. Signed measure - Wikipedia

    en.wikipedia.org/wiki/Signed_measure

    What follows are two results which will imply that an extended signed measure is the difference of two non-negative measures, and a finite signed measure is the difference of two finite non-negative measures. The Hahn decomposition theorem states that given a signed measure μ, there exist two measurable sets P and N such that: PN = X and P ...

  9. Mathematical proof - Wikipedia

    en.wikipedia.org/wiki/Mathematical_proof

    For example, direct proof can be used to prove that the sum of two even integers is always even: Consider two even integers x and y. Since they are even, they can be written as x = 2a and y = 2b, respectively, for some integers a and b. Then the sum is x + y = 2a + 2b = 2(a+b). Therefore x+y has 2 as a factor and, by definition, is even. Hence ...