enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Golden spiral - Wikipedia

    en.wikipedia.org/wiki/Golden_spiral

    Golden spirals are self-similar. The shape is infinitely repeated when magnified. In geometry, a golden spiral is a logarithmic spiral whose growth factor is φ, the golden ratio. [1] That is, a golden spiral gets wider (or further from its origin) by a factor of φ for every quarter turn it makes.

  3. Logarithmic spiral - Wikipedia

    en.wikipedia.org/wiki/Logarithmic_spiral

    The golden spiral is a logarithmic spiral that grows outward by a factor of the golden ratio for every 90 degrees of rotation (pitch angle about 17.03239 degrees). It can be approximated by a "Fibonacci spiral", made of a sequence of quarter circles with radii proportional to Fibonacci numbers.

  4. List of spirals - Wikipedia

    en.wikipedia.org/wiki/List_of_spirals

    approximation of the golden spiral golden spiral = special case of the logarithmic spiral Spiral of Theodorus (also known as Pythagorean spiral) c. 500 BC: contiguous right triangles composed of one leg with unit length and the other leg being the hypotenuse of the prior triangle: approximates the Archimedean spiral

  5. Golden ratio - Wikipedia

    en.wikipedia.org/wiki/Golden_ratio

    The golden spiral (red) and its approximation by quarter-circles (green), with overlaps shown in yellow A logarithmic spiral whose radius grows by the golden ratio per 108° of turn, surrounding nested golden isosceles triangles. This is a different spiral from the golden spiral, which grows by the golden ratio per 90° of turn. [58]

  6. Golden triangle (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Golden_triangle_(mathematics)

    Golden triangles inscribed in a logarithmic spiral. The golden triangle is used to form some points of a logarithmic spiral. By bisecting one of the base angles, a new point is created that in turn, makes another golden triangle. [4] The bisection process can be continued indefinitely, creating an infinite number of golden triangles.

  7. Chambered nautilus - Wikipedia

    en.wikipedia.org/wiki/Chambered_nautilus

    The chambered nautilus is often used as an example of the golden spiral. While nautiluses show logarithmic spirals, their ratios range from about 1.24 to 1.43, with an average ratio of about 1.33 to 1. The golden spiral's ratio is 1.618. This is visible when the cut nautilus is inspected. [13]

  8. Discover the best free online games at AOL.com - Play board, card, casino, puzzle and many more online games while chatting with others in real-time.

  9. Lucas number - Wikipedia

    en.wikipedia.org/wiki/Lucas_number

    The Lucas spiral, made with quarter-arcs, is a good approximation of the golden spiral when its terms are large.However, when its terms become very small, the arc's radius decreases rapidly from 3 to 1 then increases from 1 to 2.