Search results
Results from the WOW.Com Content Network
Building on the fluid mosaic model, a framework called the proteolipid code was proposed in order to explain membrane organization. [8] The proteolipid code relies on the concept of a zone, which is a functional region of membrane that is assembled and stabilized with both protein and lipid dependency.
Of the numerous models that have been developed to describe the deformation of cell membranes, a widely accepted model is the fluid mosaic model proposed by Singer and Nicolson in 1972. [1] In this model, the cell membrane surface is modeled as a two-dimensional fluid-like lipid bilayer where the lipid molecules can move freely. The proteins ...
A model lipid bilayer is any bilayer assembled in vitro, as opposed to the bilayer of natural cell membranes or covering various sub-cellular structures like the nucleus. They are used to study the fundamental properties of biological membranes in a simplified and well-controlled environment, and increasingly in bottom-up synthetic biology for ...
FE Modeling is a powerful tool for testing the mechanical deformation and equilibrium configuration of lipid membranes. [13] In this context membranes are treated under the thin-shell theory where the bending behavior of the membrane is described by the Helfrich bending model which considers the bilayer as being a very thin object and ...
Lipid bilayers are complicated molecular systems with many degrees of freedom. Thus, atomistic simulation of membrane and in particular ab initio calculations of its properties is difficult and computationally expensive. Quantum chemical calculations has recently been successfully performed to estimate dipole and quadrupole moments of lipid ...
This interaction also increases the mechanical rigidity of fluid membrane lipid bilayers [9] and decreases their lateral diffusion coefficient. [10] In contrast, the addition of cholesterol to gel phase bilayers disrupts local packing order, increasing the diffusion coefficient [10] and decreasing the elastic modulus.
Fluid mosaic model of a cell membrane. The fluid mosaic model explains various characteristics regarding the structure of functional cell membranes.According to this biological model, there is a lipid bilayer (two molecules thick layer consisting primarily of amphipathic phospholipids) in which protein molecules are embedded.
Rietveld & Simons related lipid rafts in model membranes to the immiscibility of ordered and disordered (Ld or Lα phase) liquid phases. [10] The cause of this immiscibility is uncertain, but the immiscibility is thought to minimize the free energy between the two phases. Studies have shown there is a difference in thickness of the lipid rafts ...