Search results
Results from the WOW.Com Content Network
An addition sequence for the set of integer S ={n 0, ..., n r-1} is an addition chain v that contains every element of S. For example, an addition sequence computing {47,117,343,499}
For Minkowski addition, the zero set, {}, containing only the zero vector, 0, is an identity element: for every subset S of a vector space, S + { 0 } = S . {\displaystyle S+\{0\}=S.} The empty set is important in Minkowski addition, because the empty set annihilates every other subset: for every subset S of a vector space, its sum with the ...
A vector addition system (VAS) is one of several mathematical modeling languages for the description of distributed systems.Vector addition systems were introduced by Richard M. Karp and Raymond E. Miller in 1969, [1] and generalized to vector addition systems with states (VASS) by John E. Hopcroft and Jean-Jacques Pansiot in 1979. [2]
In mathematics, vector algebra may mean: The operations of vector addition and scalar multiplication of a vector space; The algebraic operations in vector calculus (vector analysis) – including the dot and cross products of 3-dimensional Euclidean space; Algebra over a field – a vector space equipped with a bilinear product
Vector addition and scalar multiplication: a vector v (blue) is added to another vector w (red, upper illustration). Below, w is stretched by a factor of 2, yielding the sum v + 2w . In mathematics and physics , a vector space (also called a linear space) is a set whose elements, often called vectors , can be added together and multiplied ...
Examples include the familiar arithmetic operations of addition, subtraction, and multiplication. Other examples are readily found in different areas of mathematics, such as vector addition, matrix multiplication, and conjugation in groups. A binary function that involves several sets is sometimes also called a binary operation.
A three-dimensional vector can be specified in the following form, using unit vector notation: = ^ + ȷ ^ + ^ where v x, v y, and v z are the scalar components of v. Scalar components may be positive or negative; the absolute value of a scalar component is its magnitude.
Resolving force vectors into components of a set of basis vectors is often a more mathematically clean way to describe forces than using magnitudes and directions. [30] This is because, for orthogonal components, the components of the vector sum are uniquely determined by the scalar addition of the components of the individual vectors ...