enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Multilayer perceptron - Wikipedia

    en.wikipedia.org/wiki/Multilayer_perceptron

    If a multilayer perceptron has a linear activation function in all neurons, that is, a linear function that maps the weighted inputs to the output of each neuron, then linear algebra shows that any number of layers can be reduced to a two-layer input-output model.

  3. Feedforward neural network - Wikipedia

    en.wikipedia.org/wiki/Feedforward_neural_network

    A multilayer perceptron (MLP) is a misnomer for a modern feedforward artificial neural network, consisting of fully connected neurons (hence the synonym sometimes used of fully connected network (FCN)), often with a nonlinear kind of activation function, organized in at least three layers, notable for being able to distinguish data that is not ...

  4. Neural network (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Neural_network_(machine...

    Typically, neurons are aggregated into layers. Different layers may perform different transformations on their inputs. Signals travel from the first layer (the input layer) to the last layer (the output layer), possibly passing through multiple intermediate layers (hidden layers). A network is typically called a deep neural network if it has at ...

  5. General regression neural network - Wikipedia

    en.wikipedia.org/wiki/General_regression_neural...

    GRNN has been implemented in many computer languages including MATLAB, [3] R- programming language, Python (programming language) and Node.js.. Neural networks (specifically Multi-layer Perceptron) can delineate non-linear patterns in data by combining with generalized linear models by considering distribution of outcomes (sightly different from original GRNN).

  6. Types of artificial neural networks - Wikipedia

    en.wikipedia.org/wiki/Types_of_artificial_neural...

    An autoencoder, autoassociator or Diabolo network [8]: 19 is similar to the multilayer perceptron (MLP) – with an input layer, an output layer and one or more hidden layers connecting them. However, the output layer has the same number of units as the input layer. Its purpose is to reconstruct its own inputs (instead of emitting a target value).

  7. Multiclass classification - Wikipedia

    en.wikipedia.org/wiki/Multiclass_classification

    Instead of just having one neuron in the output layer, with binary output, one could have N binary neurons leading to multi-class classification. In practice, the last layer of a neural network is usually a softmax function layer, which is the algebraic simplification of N logistic classifiers, normalized per class by the sum of the N-1 other ...

  8. Perceptron - Wikipedia

    en.wikipedia.org/wiki/Perceptron

    Below is an example of a learning algorithm for a single-layer perceptron with a single output unit. For a single-layer perceptron with multiple output units, since the weights of one output unit are completely separate from all the others', the same algorithm can be run for each output unit.

  9. Universal approximation theorem - Wikipedia

    en.wikipedia.org/wiki/Universal_approximation...

    Also, certain non-continuous activation functions can be used to approximate a sigmoid function, which then allows the above theorem to apply to those functions. For example, the step function works. In particular, this shows that a perceptron network with a single infinitely wide hidden layer can approximate arbitrary functions.