enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Orbital mechanics - Wikipedia

    en.wikipedia.org/wiki/Orbital_mechanics

    The specific example discussed is of a satellite orbiting a planet, but the rules of thumb could also apply to other situations, such as orbits of small bodies around a star such as the Sun. Kepler's laws of planetary motion: Orbits are elliptical, with the heavier body at one focus of the ellipse. A special case of this is a circular orbit (a ...

  3. Tsiolkovsky rocket equation - Wikipedia

    en.wikipedia.org/wiki/Tsiolkovsky_rocket_equation

    A rocket's required mass ratio as a function of effective exhaust velocity ratio. The classical rocket equation, or ideal rocket equation is a mathematical equation that describes the motion of vehicles that follow the basic principle of a rocket: a device that can apply acceleration to itself using thrust by expelling part of its mass with high velocity and can thereby move due to the ...

  4. Specific orbital energy - Wikipedia

    en.wikipedia.org/wiki/Specific_orbital_energy

    The specific orbital energy associated with this orbit is −29.6 MJ/kg: the potential energy is −59.2 MJ/kg, and the kinetic energy 29.6 MJ/kg. Compared with the potential energy at the surface, which is −62.6 MJ/kg., the extra potential energy is 3.4 MJ/kg, and the total extra energy is 33.0 MJ/kg.

  5. Vis-viva equation - Wikipedia

    en.wikipedia.org/wiki/Vis-viva_equation

    The central body and orbiting body are also often referred to as the primary and a particle respectively. In the specific cases of an elliptical or circular orbit, the vis-viva equation may be readily derived from conservation of energy and momentum. Specific total energy is constant throughout the orbit.

  6. Two-body problem - Wikipedia

    en.wikipedia.org/wiki/Two-body_problem

    In the center of mass frame the kinetic energy is the lowest and the total energy becomes = ˙ + The coordinates x 1 and x 2 can be expressed as = = and in a similar way the energy E is related to the energies E 1 and E 2 that separately contain the kinetic energy of each body: = = ˙ + = = ˙ + = +

  7. Circular orbit - Wikipedia

    en.wikipedia.org/wiki/Circular_orbit

    the kinetic energy of the system is equal to the absolute value of the total energy; the potential energy of the system is equal to twice the total energy; The escape velocity from any distance is √ 2 times the speed in a circular orbit at that distance: the kinetic energy is twice as much, hence the total energy is zero. [citation needed]

  8. Mechanical energy - Wikipedia

    en.wikipedia.org/wiki/Mechanical_energy

    An example of a mechanical system: A satellite is orbiting the Earth influenced only by the conservative gravitational force; its mechanical energy is therefore conserved. The satellite's acceleration is represented by the green vector and its velocity is represented by the red vector. If the satellite's orbit is an ellipse the potential energy ...

  9. Orbital eccentricity - Wikipedia

    en.wikipedia.org/wiki/Orbital_eccentricity

    Here, the total turn is analogous to turning number, but for open curves (an angle covered by velocity vector). The limit case between an ellipse and a hyperbola, when e equals 1, is parabola. Radial trajectories are classified as elliptic, parabolic, or hyperbolic based on the energy of the orbit, not the eccentricity.