enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Orbital mechanics - Wikipedia

    en.wikipedia.org/wiki/Orbital_mechanics

    The formula for an escape velocity is derived as follows. The specific energy (energy per unit mass) of any space vehicle is composed of two components, the specific potential energy and the specific kinetic energy. The specific potential energy associated with a planet of mass M is given by =

  3. Specific orbital energy - Wikipedia

    en.wikipedia.org/wiki/Specific_orbital_energy

    The specific orbital energy associated with this orbit is −29.6 MJ/kg: the potential energy is −59.2 MJ/kg, and the kinetic energy 29.6 MJ/kg. Compared with the potential energy at the surface, which is −62.6 MJ/kg., the extra potential energy is 3.4 MJ/kg, and the total extra energy is 33.0 MJ/kg.

  4. Elliptic orbit - Wikipedia

    en.wikipedia.org/wiki/Elliptic_orbit

    An elliptical orbit is depicted in the top-right quadrant of this diagram, where the gravitational potential well of the central mass shows potential energy, and the kinetic energy of the orbital speed is shown in red. The height of the kinetic energy decreases as the orbiting body's speed decreases and distance increases according to Kepler's ...

  5. Two-body problem - Wikipedia

    en.wikipedia.org/wiki/Two-body_problem

    In the center of mass frame the kinetic energy is the lowest and the total energy becomes = ˙ + The coordinates x 1 and x 2 can be expressed as = = and in a similar way the energy E is related to the energies E 1 and E 2 that separately contain the kinetic energy of each body: = = ˙ + = = ˙ + = +

  6. Vis-viva equation - Wikipedia

    en.wikipedia.org/wiki/Vis-viva_equation

    The central body and orbiting body are also often referred to as the primary and a particle respectively. In the specific cases of an elliptical or circular orbit, the vis-viva equation may be readily derived from conservation of energy and momentum. Specific total energy is constant throughout the orbit.

  7. Mechanical energy - Wikipedia

    en.wikipedia.org/wiki/Mechanical_energy

    An example of a mechanical system: A satellite is orbiting the Earth influenced only by the conservative gravitational force; its mechanical energy is therefore conserved. The satellite's acceleration is represented by the green vector and its velocity is represented by the red vector. If the satellite's orbit is an ellipse the potential energy ...

  8. Orbit - Wikipedia

    en.wikipedia.org/wiki/Orbit

    An animation showing a low eccentricity orbit (near-circle, in red), and a high eccentricity orbit (ellipse, in purple). In celestial mechanics, an orbit (also known as orbital revolution) is the curved trajectory of an object [1] such as the trajectory of a planet around a star, or of a natural satellite around a planet, or of an artificial satellite around an object or position in space such ...

  9. Orbital eccentricity - Wikipedia

    en.wikipedia.org/wiki/Orbital_eccentricity

    Here, the total turn is analogous to turning number, but for open curves (an angle covered by velocity vector). The limit case between an ellipse and a hyperbola, when e equals 1, is parabola. Radial trajectories are classified as elliptic, parabolic, or hyperbolic based on the energy of the orbit, not the eccentricity.