enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Decision tree pruning - Wikipedia

    en.wikipedia.org/wiki/Decision_tree_pruning

    Pruning is a data compression technique in machine learning and search algorithms that reduces the size of decision trees by removing sections of the tree that are non-critical and redundant to classify instances.

  3. Decision tree learning - Wikipedia

    en.wikipedia.org/wiki/Decision_tree_learning

    A decision tree or a classification tree is a tree in which each internal (non-leaf) node is labeled with an input feature. The arcs coming from a node labeled with an input feature are labeled with each of the possible values of the target feature or the arc leads to a subordinate decision node on a different input feature.

  4. Grafting (decision trees) - Wikipedia

    en.wikipedia.org/wiki/Grafting_(decision_trees)

    Then they are grafted to the existing tree to improve the decision making process. Pruning and Grafting are complementary methods to improve the decision tree in supporting the decision. Pruning allows cutting parts of decision trees to give more clarity and Grafting adds nodes to the decision trees to increase the predictive accuracy. To ...

  5. Alpha–beta pruning - Wikipedia

    en.wikipedia.org/wiki/Alpha–beta_pruning

    Alpha–beta pruning is a search algorithm that seeks to decrease the number of nodes that are evaluated by the minimax algorithm in its search tree. It is an adversarial search algorithm used commonly for machine playing of two-player combinatorial games ( Tic-tac-toe , Chess , Connect 4 , etc.).

  6. Decision tree - Wikipedia

    en.wikipedia.org/wiki/Decision_tree

    Decision trees can also be seen as generative models of induction rules from empirical data. An optimal decision tree is then defined as a tree that accounts for most of the data, while minimizing the number of levels (or "questions"). [8] Several algorithms to generate such optimal trees have been devised, such as ID3/4/5, [9] CLS, ASSISTANT ...

  7. Bias–variance tradeoff - Wikipedia

    en.wikipedia.org/wiki/Bias–variance_tradeoff

    In decision trees, the depth of the tree determines the variance. Decision trees are commonly pruned to control variance. [7]: 307 One way of resolving the trade-off is to use mixture models and ensemble learning.

  8. AOL Mail

    mail.aol.com

    Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!

  9. C4.5 algorithm - Wikipedia

    en.wikipedia.org/wiki/C4.5_algorithm

    C4.5 is an algorithm used to generate a decision tree developed by Ross Quinlan. [1] C4.5 is an extension of Quinlan's earlier ID3 algorithm.The decision trees generated by C4.5 can be used for classification, and for this reason, C4.5 is often referred to as a statistical classifier.