Search results
Results from the WOW.Com Content Network
The Wiener process is widely considered the most studied and central stochastic process in probability theory. [1] [2] [3] In probability theory and related fields, a stochastic (/ s t ə ˈ k æ s t ɪ k /) or random process is a mathematical object usually defined as a family of random variables in a probability space, where the index of the ...
In probability theory, a continuous stochastic process is a type of stochastic process that may be said to be "continuous" as a function of its "time" or index parameter. Continuity is a nice property for (the sample paths of) a process to have, since it implies that they are well-behaved in some sense, and, therefore, much easier to analyze.
where P(t) is the transition matrix of jump t, i.e., P(t) is the matrix such that entry (i,j) contains the probability of the chain moving from state i to state j in t steps. As a corollary, it follows that to calculate the transition matrix of jump t , it is sufficient to raise the transition matrix of jump one to the power of t , that is
In two dimensions, the average number of points the same random walk has on the boundary of its trajectory is r 4/3. This corresponds to the fact that the boundary of the trajectory of a Wiener process is a fractal of dimension 4/3, a fact predicted by Mandelbrot using simulations but proved only in 2000 by Lawler, Schramm and Werner. [16]
This is the same as saying that the probability of event {1,2,3,4,6} is 5/6. This event encompasses the possibility of any number except five being rolled. The mutually exclusive event {5} has a probability of 1/6, and the event {1,2,3,4,5,6} has a probability of 1, that is, absolute certainty.
Graphs of probability P of not observing independent events each of probability p after n Bernoulli trials vs np for various p.Three examples are shown: Blue curve: Throwing a 6-sided die 6 times gives a 33.5% chance that 6 (or any other given number) never turns up; it can be observed that as n increases, the probability of a 1/n-chance event never appearing after n tries rapidly converges to 0.
A Markov chain with two states, A and E. In probability, a discrete-time Markov chain (DTMC) is a sequence of random variables, known as a stochastic process, in which the value of the next variable depends only on the value of the current variable, and not any variables in the past.
Consider a stochastic process X : [0, T] × Ω → R, and equip the real line R with its usual Borel sigma algebra generated by the open sets.. If we take the natural filtration F • X, where F t X is the σ-algebra generated by the pre-images X s −1 (B) for Borel subsets B of R and times 0 ≤ s ≤ t, then X is automatically F • X-adapted.