enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Intensive and extensive properties - Wikipedia

    en.wikipedia.org/wiki/Intensive_and_extensive...

    The ratio of two extensive properties of the same object or system is an intensive property. For example, the ratio of an object's mass and volume, which are two extensive properties, is density, which is an intensive property. [10] More generally properties can be combined to give new properties, which may be called derived or composite ...

  3. Thermodynamic databases for pure substances - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_databases...

    The heat content of an ideal gas is independent of pressure (or volume), but the heat content of real gases varies with pressure, hence the need to define the state for the gas (real or ideal) and the pressure. Note that for some thermodynamic databases such as for steam, the reference temperature is 273.15 K (0 °C).

  4. List of thermodynamic properties - Wikipedia

    en.wikipedia.org/wiki/List_of_thermodynamic...

    Some constants, such as the ideal gas constant, R, do not describe the state of a system, and so are not properties. On the other hand, some constants, such as K f (the freezing point depression constant, or cryoscopic constant ), depend on the identity of a substance, and so may be considered to describe the state of a system, and therefore ...

  5. Volume (thermodynamics) - Wikipedia

    en.wikipedia.org/wiki/Volume_(thermodynamics)

    The specific volume, an intensive property, is the system's volume per unit mass. Volume is a function of state and is interdependent with other thermodynamic properties such as pressure and temperature. For example, volume is related to the pressure and temperature of an ideal gas by the ideal gas law.

  6. Material properties (thermodynamics) - Wikipedia

    en.wikipedia.org/wiki/Material_properties...

    The three "standard" properties are in fact the three possible second derivatives of the Gibbs free energy with respect to temperature and pressure. Moreover, considering derivatives such as ∂ 3 G ∂ P ∂ T 2 {\displaystyle {\frac {\partial ^{3}G}{\partial P\partial T^{2}}}} and the related Schwartz relations, shows that the properties ...

  7. Thermodynamic equations - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_equations

    Extensive parameters are properties of the entire system, as contrasted with intensive parameters which can be defined at a single point, such as temperature and pressure. The extensive parameters (except entropy) are generally conserved in some way as long as the system is "insulated" to changes to that parameter from the outside. The truth of ...

  8. Compressibility factor - Wikipedia

    en.wikipedia.org/wiki/Compressibility_factor

    For a gas that is a mixture of two or more pure gases (air or natural gas, for example), the gas composition must be known before compressibility can be calculated. Alternatively, the compressibility factor for specific gases can be read from generalized compressibility charts [ 1 ] that plot Z {\displaystyle Z} as a function of pressure at ...

  9. Phase diagram - Wikipedia

    en.wikipedia.org/wiki/Phase_diagram

    The pressure on a pressure-temperature diagram (such as the water phase diagram shown) is the partial pressure of the substance in question. [1] The solidus is the temperature below which the substance is stable in the solid state. The liquidus is the temperature above which the substance is stable in a liquid state.