enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Tetration - Wikipedia

    en.wikipedia.org/wiki/Tetration

    For each integer n > 2, the function n x is defined and increasing for x ≥ 1, and n 1 = 1, so that the n th super-root of x, , exists for x ≥ 1. However, if the linear approximation above is used, then y x = y + 1 {\displaystyle ^{y}x=y+1} if −1 < y ≤ 0 , so y y + 1 s {\displaystyle ^{y}{\sqrt {y+1}}_{s}} cannot exist.

  3. Horner's method - Wikipedia

    en.wikipedia.org/wiki/Horner's_method

    0.54 −6 0 3 −522 −1 1 └─────────────────────── 22 −1 1 −4 The third row is the sum of the first two rows, divided by 2 . Each entry in the second row is the product of 1 with the third-row entry to the left.

  4. Trigonometric substitution - Wikipedia

    en.wikipedia.org/wiki/Trigonometric_substitution

    In the integral , we may use = ⁡, = ⁡, = ⁡. Then, = ⁡ ⁡ = ⁡ (⁡) = ⁡ ⁡ = = + = ⁡ +. The above step requires that > and ⁡ > We can choose to be the principal root of , and impose the restriction / < < / by using the inverse sine function.

  5. Estrin's scheme - Wikipedia

    en.wikipedia.org/wiki/Estrin's_scheme

    In numerical analysis, Estrin's scheme (after Gerald Estrin), also known as Estrin's method, is an algorithm for numerical evaluation of polynomials.. Horner's method for evaluation of polynomials is one of the most commonly used algorithms for this purpose, and unlike Estrin's scheme it is optimal in the sense that it minimizes the number of multiplications and additions required to evaluate ...

  6. Gaussian integral - Wikipedia

    en.wikipedia.org/wiki/Gaussian_integral

    A different technique, which goes back to Laplace (1812), [3] is the following. Let = =. Since the limits on s as y → ±∞ depend on the sign of x, it simplifies the calculation to use the fact that e −x 2 is an even function, and, therefore, the integral over all real numbers is just twice the integral from zero to infinity.

  7. Contour integration - Wikipedia

    en.wikipedia.org/wiki/Contour_integration

    [1] [2] [3] Contour integration is closely related to the calculus of residues, [4] a method of complex analysis. One use for contour integrals is the evaluation of integrals along the real line that are not readily found by using only real variable methods. [5] Contour integration methods include:

  8. 1/2 + 1/4 + 1/8 + 1/16 + ⋯ - ⋯ - Wikipedia

    en.wikipedia.org/wiki/1/2_%2B_1/4_%2B_1/8_%2B_1/...

    This series was used as a representation of two of Zeno's paradoxes. [2] For example, in the paradox of Achilles and the Tortoise, the warrior Achilles was to race against a tortoise. The track is 100 meters long. Achilles could run at 10 m/s, while the tortoise only 5. The tortoise, with a 10-meter advantage, Zeno argued, would win.

  9. Exponentiation - Wikipedia

    en.wikipedia.org/wiki/Exponentiation

    Graphs of y = b x for various bases b: base 10, base e, base 2, base ⁠ 1 / 2 ⁠. Each curve passes through the point (0, 1) because any nonzero number raised to the power of 0 is 1. At x = 1, the value of y equals the base because any number raised to the power of 1 is the number itself.