Search results
Results from the WOW.Com Content Network
The Womersley number, usually denoted , is defined by the relation = = = =, where is an appropriate length scale (for example the radius of a pipe), is the angular frequency of the oscillations, and , , are the kinematic viscosity, density, and dynamic viscosity of the fluid, respectively. [2]
The standard translational model of Brownian motion. Much like translational diffusion in which particles in one area of high concentration slowly spread position through random walks until they are near-equally distributed over the entire space, in rotational diffusion, over long periods of time the directions which these particles face will spread until they follow a completely random ...
Mass transfer coefficients can be estimated from many different theoretical equations, correlations, and analogies that are functions of material properties, intensive properties and flow regime (laminar or turbulent flow). Selection of the most applicable model is dependent on the materials and the system, or environment, being studied.
A correct description of such an object requires the application of Newton's second law to the entire, constant-mass system consisting of both the object and its ejected mass. [7] Mass flow rate can be used to calculate the energy flow rate of a fluid: [8] ˙ = ˙, where is the unit mass energy of a system.
The turbulent Schmidt number is commonly used in turbulence research and is defined as: [3] = where: is the eddy viscosity in units of (m 2 /s); is the eddy diffusivity (m 2 /s).; The turbulent Schmidt number describes the ratio between the rates of turbulent transport of momentum and the turbulent transport of mass (or any passive scalar).
The dimensionless added mass coefficient is the added mass divided by the displaced fluid mass – i.e. divided by the fluid density times the volume of the body. In general, the added mass is a second-order tensor, relating the fluid acceleration vector to the resulting force vector on the body. [1]
In a nozzle or other constriction, the discharge coefficient (also known as coefficient of discharge or efflux coefficient) is the ratio of the actual discharge to the ideal discharge, [1] i.e., the ratio of the mass flow rate at the discharge end of the nozzle to that of an ideal nozzle which expands an identical working fluid from the same initial conditions to the same exit pressures.
The sense of rotation of these currents may either be cyclonic or anticyclonic (such as Haida Eddies). Oceanic eddies are also usually made of water masses that are different from those outside the eddy. That is, the water within an eddy usually has different temperature and salinity characteristics to the water outside the eddy.