enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Sulfur metabolism - Wikipedia

    en.wikipedia.org/wiki/Sulfur_metabolism

    From the sulfide they form the amino acids cysteine and methionine, sulfolipids, and other sulfur compounds. Animals obtain sulfur from cysteine and methionine in the protein that they consume. Sulfur is the third most abundant mineral element in the body. [21] The amino acids cysteine and methionine are used by the body to make glutathione.

  3. Sulfur assimilation - Wikipedia

    en.wikipedia.org/wiki/Sulfur_assimilation

    In animals, sulfur assimilation occurs primarily through the diet, as animals cannot produce sulfur-containing compounds directly. Sulfur is incorporated into amino acids such as cysteine and methionine, which are used to build proteins and other important molecules. [2]

  4. S-Adenosyl methionine - Wikipedia

    en.wikipedia.org/wiki/S-Adenosyl_methionine

    In bacteria, SAM is bound by the SAM riboswitch, which regulates genes involved in methionine or cysteine biosynthesis. In eukaryotic cells, SAM serves as a regulator of a variety of processes including DNA, tRNA, and rRNA methylation; immune response; [2] amino acid metabolism; transsulfuration; and more.

  5. Adenylyl-sulfate reductase (thioredoxin) - Wikipedia

    en.wikipedia.org/wiki/Adenylyl-sulfate_reductase...

    The thioredoxin dependent adenylyl-sulfate reductase's cleaved disulfuric ions are incorporated into the molecular structure of the proto-proteins in the formation of the aforementioned amino acids. In studies such as one published in the Journal of Biological Chemistry experimentally observed the use of this enzyme type and thioredoxin in the ...

  6. Biological roles of the elements - Wikipedia

    en.wikipedia.org/wiki/Biological_roles_of_the...

    Sulfur is essential and ubiquitous, partly because it is part of the amino acids cysteine and methionine. Many metals that appear as enzyme cofactors are bound by cysteine, and methionine is essential for protein synthesis. Toxic in some forms. tantalum: 73: 1c: Has no known biological role, but is biocompatible, used in medical implants, e.g ...

  7. Bacterial cell structure - Wikipedia

    en.wikipedia.org/wiki/Bacterial_cell_structure

    The latter one is more widespread. These acids are polymers of ribitol phosphate and glycerol phosphate, respectively, and only located on the surface of many Gram-positive bacteria. However, the exact function of teichoic acid is debated and not fully understood. Some are lipid-linked to form lipoteichoic acids.

  8. Ferredoxin - Wikipedia

    en.wikipedia.org/wiki/Ferredoxin

    Ferredoxins (from Latin ferrum: iron + redox, often abbreviated "fd") are iron–sulfur proteins that mediate electron transfer in a range of metabolic reactions. The term "ferredoxin" was coined by D.C. Wharton of the DuPont Co. and applied to the "iron protein" first purified in 1962 by Mortenson, Valentine, and Carnahan from the anaerobic bacterium Clostridium pasteurianum.

  9. Microbial metabolism - Wikipedia

    en.wikipedia.org/wiki/Microbial_metabolism

    Sulfur oxidation involves the oxidation of reduced sulfur compounds (such as sulfide H 2 S), inorganic sulfur (S), and thiosulfate (S 2 O 2− 3) to form sulfuric acid (H 2 SO 4). A classic example of a sulfur-oxidizing bacterium is Beggiatoa, a microbe originally described by Sergei Winogradsky, one of the founders of environmental microbiology.