enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Multinomial logistic regression - Wikipedia

    en.wikipedia.org/wiki/Multinomial_logistic...

    Multinomial logistic regression is known by a variety of other names, including polytomous LR, [2] [3] multiclass LR, softmax regression, multinomial logit (mlogit), the maximum entropy (MaxEnt) classifier, and the conditional maximum entropy model.

  3. Seemingly unrelated regressions - Wikipedia

    en.wikipedia.org/wiki/Seemingly_unrelated...

    In econometrics, the seemingly unrelated regressions (SUR) [1]: 306 [2]: 279 [3]: 332 or seemingly unrelated regression equations (SURE) [4] [5]: 2 model, proposed by Arnold Zellner in (1962), is a generalization of a linear regression model that consists of several regression equations, each having its own dependent variable and potentially ...

  4. Error correction model - Wikipedia

    en.wikipedia.org/wiki/Error_correction_model

    The first term in the RHS describes short-run impact of change in on , the second term explains long-run gravitation towards the equilibrium relationship between the variables, and the third term reflects random shocks that the system receives (e.g. shocks of consumer confidence that affect consumption). To see how the model works, consider two ...

  5. Statistical model specification - Wikipedia

    en.wikipedia.org/wiki/Statistical_model...

    A variable omitted from the model may have a relationship with both the dependent variable and one or more of the independent variables (causing omitted-variable bias). [3] An irrelevant variable may be included in the model (although this does not create bias, it involves overfitting and so can lead to poor predictive performance).

  6. Omitted-variable bias - Wikipedia

    en.wikipedia.org/wiki/Omitted-variable_bias

    The second term after the equal sign is the omitted-variable bias in this case, which is non-zero if the omitted variable z is correlated with any of the included variables in the matrix X (that is, if X′Z does not equal a vector of zeroes).

  7. Leverage (statistics) - Wikipedia

    en.wikipedia.org/wiki/Leverage_(statistics)

    Leverage is closely related to the Mahalanobis distance (proof [4]).Specifically, for some matrix , the squared Mahalanobis distance of (where is row of ) from the vector of mean ^ = = of length , is () = (^) (^), where = is the estimated covariance matrix of 's.

  8. Regularization (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Regularization_(mathematics)

    A regularization term (or regularizer) () is added to a loss function: = ((),) + where is an underlying loss function that describes the cost of predicting () when the label is , such as the square loss or hinge loss; and is a parameter which controls the importance of the regularization term.

  9. Ordered logit - Wikipedia

    en.wikipedia.org/wiki/Ordered_logit

    We assume that the probabilities of these outcomes are given by p 1 (x), p 2 (x), p 3 (x), p 4 (x), p 5 (x), all of which are functions of some independent variable(s) x. Then, for a fixed value of x, the logarithms of the odds (not the logarithms of the probabilities) of answering in certain ways are: