Search results
Results from the WOW.Com Content Network
Just another Gibbs sampler (JAGS) is a program for simulation from Bayesian hierarchical models using Markov chain Monte Carlo (MCMC), developed by Martyn Plummer. JAGS has been employed for statistical work in many fields, for example ecology, management, and genetics. [2] [3] [4]
Bayesian hierarchical modelling is a statistical model written in multiple levels (hierarchical form) that estimates the parameters of the posterior distribution using the Bayesian method. [1] The sub-models combine to form the hierarchical model, and Bayes' theorem is used to integrate them with the observed data and account for all the ...
JAGS (Just another Gibbs sampler) is a GPL program for analysis of Bayesian hierarchical models using Markov Chain Monte Carlo. Church is free software for performing Gibbs inference over arbitrary distributions that are specified as probabilistic programs. PyMC is an open source Python library for Bayesian learning of general Probabilistic ...
Multilevel models are a subclass of hierarchical Bayesian models, which are general models with multiple levels of random variables and arbitrary relationships among the different variables. Multilevel analysis has been extended to include multilevel structural equation modeling , multilevel latent class modeling , and other more general models.
The same BUGS language may be used to specify Bayesian models for inference via different computational choices ("samplers") and conventions or defaults, using a standalone program WinBUGS (or related R packages, rbugs and r2winbugs) and JAGS (Just Another Gibbs Sampler, another standalone program with related R packages including rjags, R2jags ...
A Bayesian Nash Equilibrium (BNE) is a Nash equilibrium for a Bayesian game, which is derived from the ex-ante normal form game associated with the Bayesian framework. In a traditional (non-Bayesian) game, a strategy profile is a Nash equilibrium if every player's strategy is a best response to the other players' strategies.
Empirical Bayes methods can be seen as an approximation to a fully Bayesian treatment of a hierarchical Bayes model.. In, for example, a two-stage hierarchical Bayes model, observed data = {,, …,} are assumed to be generated from an unobserved set of parameters = {,, …,} according to a probability distribution ().
Integrated nested Laplace approximations (INLA) is a method for approximate Bayesian inference based on Laplace's method. [1] It is designed for a class of models called latent Gaussian models (LGMs), for which it can be a fast and accurate alternative for Markov chain Monte Carlo methods to compute posterior marginal distributions.