Search results
Results from the WOW.Com Content Network
Low-density parity-check (LDPC) codes are a class of highly efficient linear block codes made from many single parity check (SPC) codes. They can provide performance very close to the channel capacity (the theoretical maximum) using an iterated soft-decision decoding approach, at linear time complexity in terms of their block length.
The conjugate gradient method can be applied to an arbitrary n-by-m matrix by applying it to normal equations A T A and right-hand side vector A T b, since A T A is a symmetric positive-semidefinite matrix for any A. The result is conjugate gradient on the normal equations (CGN or CGNR). A T Ax = A T b
Download QR code; Print/export ... In mathematics, positive semidefinite may refer to: Positive semidefinite function ... Cookie statement; Mobile view;
In contrast with the complex case, a positive-semidefinite operator on a real Hilbert space may not be symmetric. As a counterexample, define A : R 2 → R 2 {\displaystyle A:\mathbb {R} ^{2}\to \mathbb {R} ^{2}} to be an operator of rotation by an acute angle φ ∈ ( − π / 2 , π / 2 ) . {\displaystyle \varphi \in (-\pi /2,\pi /2).}
If the positive-definiteness condition is replaced by merely requiring that , for all , then one obtains the definition of positive semi-definite Hermitian form. A positive semi-definite Hermitian form ⋅ , ⋅ {\displaystyle \langle \cdot ,\cdot \rangle } is an inner product if and only if for all x {\displaystyle x} , if x , x = 0 ...
For positive semidefinite A, an decomposition exists where the number of non-zero elements on the diagonal D is exactly the rank of A. [11] Some indefinite matrices for which no Cholesky decomposition exists have an LDL decomposition with negative entries in D : it suffices that the first n − 1 leading principal minors of A are non-singular.
The Gram matrix is positive semidefinite, and every positive semidefinite matrix is the Gramian matrix for some set of vectors. The fact that the Gramian matrix is positive-semidefinite can be seen from the following simple derivation:
This implies that at a local minimum the Hessian is positive-semidefinite, and at a local maximum the Hessian is negative-semidefinite. For positive-semidefinite and negative-semidefinite Hessians the test is inconclusive (a critical point where the Hessian is semidefinite but not definite may be a local extremum or a saddle point).