enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Dispersion relation - Wikipedia

    en.wikipedia.org/wiki/Dispersion_relation

    Given the dispersion relation, one can calculate the frequency-dependent phase velocity and group velocity of each sinusoidal component of a wave in the medium, as a function of frequency. In addition to the geometry-dependent and material-dependent dispersion relations, the overarching Kramers–Kronig relations describe the frequency ...

  3. Particle velocity - Wikipedia

    en.wikipedia.org/wiki/Particle_velocity

    Particle velocity (denoted v or SVL) is the velocity of a particle (real or imagined) in a medium as it transmits a wave. The SI unit of particle velocity is the metre per second (m/s). In many cases this is a longitudinal wave of pressure as with sound , but it can also be a transverse wave as with the vibration of a taut string.

  4. Uncertainty principle - Wikipedia

    en.wikipedia.org/wiki/Uncertainty_principle

    Top: If wavelength λ is unknown, so are momentum p, wave-vector k and energy E (de Broglie relations). As the particle is more localized in position space, Δx is smaller than for Δp x. Bottom: If λ is known, so are p, k, and E. As the particle is more localized in momentum space, Δp is smaller than for Δx.

  5. Matter wave - Wikipedia

    en.wikipedia.org/wiki/Matter_wave

    In the de Broglie hypothesis, the velocity of a particle equals the group velocity of the matter wave. [ 2 ] : 214 In isotropic media or a vacuum the group velocity of a wave is defined by: v g = ∂ ω ( k ) ∂ k {\displaystyle \mathbf {v_{g}} ={\frac {\partial \omega (\mathbf {k} )}{\partial \mathbf {k} }}} The relationship between the ...

  6. Wavenumber - Wikipedia

    en.wikipedia.org/wiki/Wavenumber

    In multidimensional systems, the wavenumber is the magnitude of the wave vector. The space of wave vectors is called reciprocal space. Wave numbers and wave vectors play an essential role in optics and the physics of wave scattering, such as X-ray diffraction, neutron diffraction, electron diffraction, and elementary particle physics.

  7. Wave–particle duality - Wikipedia

    en.wikipedia.org/wiki/Waveparticle_duality

    In the late 17th century, Sir Isaac Newton had advocated that light was corpuscular (particulate), but Christiaan Huygens took an opposing wave description. While Newton had favored a particle approach, he was the first to attempt to reconcile both wave and particle theories of light, and the only one in his time to consider both, thereby anticipating modern wave-particle duality.

  8. List of equations in wave theory - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in_wave...

    The phase velocity varies with frequency. The phase velocity is the rate at which the phase of the wave propagates in space. The group velocity is the rate at which the wave envelope, i.e. the changes in amplitude, propagates. The wave envelope is the profile of the wave amplitudes; all transverse displacements are bound by the envelope profile.

  9. Airy wave theory - Wikipedia

    en.wikipedia.org/wiki/Airy_wave_theory

    Stokes first definition of wave celerity (S1) – with the mean Eulerian flow velocity equal to zero for all elevations z ' below the wave troughs, and; Stokes second definition of wave celerity (S2) – with the mean mass transport equal to zero. The above relation between wave momentum M and wave energy density E is valid within the framework ...