enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Transfer-matrix method (optics) - Wikipedia

    en.wikipedia.org/wiki/Transfer-matrix_method...

    The overall reflection of a layer structure is the sum of an infinite number of reflections. The transfer-matrix method is based on the fact that, according to Maxwell's equations , there are simple continuity conditions for the electric field across boundaries from one medium to the next.

  3. Ray transfer matrix analysis - Wikipedia

    en.wikipedia.org/wiki/Ray_transfer_matrix_analysis

    Each optical element (surface, interface, mirror, or beam travel) is described by a 2 × 2 ray transfer matrix which operates on a vector describing an incoming light ray to calculate the outgoing ray. Multiplication of the successive matrices thus yields a concise ray transfer matrix describing the entire optical system.

  4. Reflectarray antenna - Wikipedia

    en.wikipedia.org/wiki/Reflectarray_antenna

    The reflection phase at each unit cell determines the overall beam shape and direction. Ideally, the total phase shift range would be 360°. [ 1 ] The aperture efficiency , and hence gain , of the reflectarray will be reduced if the angle of incidence to the unit cells is not considered, or if spillover occurs or illumination of the ...

  5. Active reflection coefficient - Wikipedia

    en.wikipedia.org/wiki/Active_reflection_coefficient

    The active reflection coefficient is a function of frequency in addition to the excitation of the neighboring cells. [1] In computational electromagnetics , the active reflection coefficient is usually determined from unit cell analysis in the frequency domain , where the phase shift over the unit cell (progressive phase shift used to steer the ...

  6. Vectorization (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Vectorization_(mathematics)

    In Matlab/GNU Octave a matrix A can be vectorized by A(:). GNU Octave also allows vectorization and half-vectorization with vec(A) and vech(A) respectively. Julia has the vec(A) function as well. In Python NumPy arrays implement the flatten method, [note 1] while in R the desired effect can be achieved via the c() or as.vector() functions.

  7. Transpositions matrix - Wikipedia

    en.wikipedia.org/wiki/Transpositions_matrix

    In [5] are given as examples code of a Matlab functions that creates and matrices for vector of size n = 2, 4, or, 8. Stay open question is it possible to create T r s {\displaystyle Trs} matrices of size, greater than 8.

  8. Orthogonal matrix - Wikipedia

    en.wikipedia.org/wiki/Orthogonal_matrix

    This is a reflection in the hyperplane perpendicular to v (negating any vector component parallel to v). If v is a unit vector, then Q = I − 2vv T suffices. A Householder reflection is typically used to simultaneously zero the lower part of a column. Any orthogonal matrix of size n × n can be constructed as a product of at most n such ...

  9. Transformation matrix - Wikipedia

    en.wikipedia.org/wiki/Transformation_matrix

    A reflection about a line or plane that does not go through the origin is not a linear transformation — it is an affine transformation — as a 4×4 affine transformation matrix, it can be expressed as follows (assuming the normal is a unit vector): [′ ′ ′] = [] [] where = for some point on the plane, or equivalently, + + + =.