Search results
Results from the WOW.Com Content Network
O, samples enriched with the other stable isotopes can be used for isotope labeling. For example, it was proven that the oxygen released in photosynthesis originates in H 2 O, rather than in the also consumed CO 2, by isotope tracing experiments. The oxygen contained in CO 2 in turn is used to make up the sugars formed by photosynthesis.
Oxygen-18 (18 O, Ω [1]) is a natural, stable isotope of oxygen and one of the environmental isotopes. 18 O is an important precursor for the production of fluorodeoxyglucose (FDG) used in positron emission tomography (PET). Generally, in the radiopharmaceutical industry, enriched water (H
Conceptually, the oxidation state may be positive, negative or zero. Beside nearly-pure ionic bonding, many covalent bonds exhibit a strong ionicity, making oxidation state a useful predictor of charge. The oxidation state of an atom does not represent the "real" charge on that atom, or any other actual atomic property.
Oxygen (chemical symbol O) has three naturally occurring isotopes: 16 O, 17 O, and 18 O, where the 16, 17 and 18 refer to the atomic mass.The most abundant is 16 O, with a small percentage of 18 O and an even smaller percentage of 17 O. Oxygen isotope analysis considers only the ratio of 18 O to 16 O present in a sample.
Oxygen isotopic ratios, which may be measured very precisely, yield a unique and distinct signature for each Solar System body. [40] Different oxygen isotopic signatures can indicate the origin of material ejected into space. [41] The Moon's titanium isotope ratio (50 Ti/ 47 Ti) appears close to the Earth's (within 4 ppm).
For example, the isotopes of oxygen include 17 O(5/2+), meaning that the spin is 5/2 and the parity is even. The shell model explains this because the first 16 nucleons are paired so that each pair has spin zero and even parity, and the last nucleon is in the 1d 5/2 shell, which has even parity since ℓ = 2 for a d orbital. [10]
In geochemistry, paleoclimatology and paleoceanography δ 18 O or delta-O-18 is a measure of the deviation in ratio of stable isotopes oxygen-18 (18 O) and oxygen-16 (16 O). It is commonly used as a measure of the temperature of precipitation, as a measure of groundwater/mineral interactions, and as an indicator of processes that show isotopic fractionation, like methanogenesis.
Archaeological materials, such as bone, organic residues, hair, or sea shells, can serve as substrates for isotopic analysis. Carbon, nitrogen and zinc isotope ratios are used to investigate the diets of past people; these isotopic systems can be used with others, such as strontium or oxygen, to answer questions about population movements and cultural interactions, such as trade.