Search results
Results from the WOW.Com Content Network
The curiously recurring template pattern (CRTP) is an idiom, originally in C++, in which a class X derives from a class template instantiation using X itself as a template argument. [1] More generally it is known as F-bound polymorphism , and it is a form of F -bounded quantification .
Providing a static method that returns a reference to the instance; The instance is usually stored as a private static variable; the instance is created when the variable is initialized, at some point before when the static method is first called. This C++23 implementation is based on the pre-C++98 implementation in the book [citation needed].
In 1989, C++ 2.0 was released, followed by the updated second edition of The C++ Programming Language in 1991. [32] New features in 2.0 included multiple inheritance, abstract classes, static member functions, const member functions, and protected members. In 1990, The Annotated C++ Reference Manual was published. This work became the basis for ...
When T has the nested type foobar defined, the instantiation of the first test works and the null pointer constant is successfully passed. (And the resulting type of the expression is yes .) If it does not work, the only available function is the second test , and the resulting type of the expression is no .
For this purpose, the C++11 standard library defines the smart pointer classes std::unique_ptr for single-owned objects and std::shared_ptr for objects with shared ownership. Similar classes are also available through std::auto_ptr in C++98, and boost::shared_ptr in the Boost libraries. Also, messages can be sent to network resources using RAII.
In a software design pattern view, lazy initialization is often used together with a factory method pattern. This combines three ideas: Using a factory method to create instances of a class (factory method pattern) Storing the instances in a map, and returning the same instance to each request for an instance with same parameters (multiton pattern)
The object methods include access to the object state (via an implicit or explicit parameter that references the object) whereas class methods do not. If the language supports inheritance , a class can be defined based on another class with all of its state and behavior plus additional state and behavior that further specializes the class.
Some languages require that method be specifically declared as virtual (e.g. C++), and in others, all methods are virtual (e.g. Java). An invocation of a non-virtual method will always be statically dispatched (i.e. the address of the function call is determined at compile-time).