enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. DFT matrix - Wikipedia

    en.wikipedia.org/wiki/DFT_matrix

    In this case, if we make a very large matrix with complex exponentials in the rows (i.e., cosine real parts and sine imaginary parts), and increase the resolution without bound, we approach the kernel of the Fredholm integral equation of the 2nd kind, namely the Fourier operator that defines the continuous Fourier transform. A rectangular ...

  3. Discrete Fourier transform - Wikipedia

    en.wikipedia.org/wiki/Discrete_Fourier_transform

    The fastest known algorithms for the multiplication of very large integers use the polynomial multiplication method outlined above. Integers can be treated as the value of a polynomial evaluated specifically at the number base, with the coefficients of the polynomial corresponding to the digits in that base (ex. 123 = 1 ⋅ 10 2 + 2 ⋅ 10 1 ...

  4. List of numerical libraries - Wikipedia

    en.wikipedia.org/wiki/List_of_numerical_libraries

    Hermes Project: C++/Python library for rapid prototyping of space- and space-time adaptive hp-FEM solvers. IML++ is a C++ library for solving linear systems of equations, capable of dealing with dense, sparse, and distributed matrices. IT++ is a C++ library for linear algebra (matrices and vectors), signal processing and communications ...

  5. Fast Fourier transform - Wikipedia

    en.wikipedia.org/wiki/Fast_Fourier_transform

    An example FFT algorithm structure, using a decomposition into half-size FFTs A discrete Fourier analysis of a sum of cosine waves at 10, 20, 30, 40, and 50 Hz. A fast Fourier transform (FFT) is an algorithm that computes the discrete Fourier transform (DFT) of a sequence, or its inverse (IDFT).

  6. Overlap–save method - Wikipedia

    en.wikipedia.org/wiki/Overlap–save_method

    When the DFT and IDFT are implemented by the FFT algorithm, the pseudocode above requires about N (log 2 (N) + 1) complex multiplications for the FFT, product of arrays, and IFFT. [ E ] Each iteration produces N-M+1 output samples, so the number of complex multiplications per output sample is about :

  7. Overlap–add method - Wikipedia

    en.wikipedia.org/wiki/Overlap–add_method

    The two methods are also compared in Figure 3, created by Matlab simulation. The contours are lines of constant ratio of the times it takes to perform both methods. When the overlap-add method is faster, the ratio exceeds 1, and ratios as high as 3 are seen. Fig 3: Gain of the overlap-add method compared to a single, large circular convolution.

  8. Comparison of linear algebra libraries - Wikipedia

    en.wikipedia.org/wiki/Comparison_of_linear...

    C++ template library; binds to optimized BLAS such as the Intel MKL; Includes matrix decompositions, non-linear solvers, and machine learning tooling Eigen: Benoît Jacob C++ 2008 3.4.0 / 08.2021 Free MPL2: Eigen is a C++ template library for linear algebra: matrices, vectors, numerical solvers, and related algorithms. Fastor [5]

  9. Circular convolution - Wikipedia

    en.wikipedia.org/wiki/Circular_convolution

    Furthermore, the circular convolution is very efficient to compute, using a fast Fourier transform (FFT) algorithm and the circular convolution theorem. There are also methods for dealing with an x sequence that is longer than a practical value for N. The sequence is divided into segments (blocks) and processed piecewise. Then the filtered ...