Search results
Results from the WOW.Com Content Network
Allylic oxidation can be predicted by the substitution pattern on the olefin. In the case of 1,2-disubstituted olefins, reaction rates follow CH > CH 2 > CH 3: Geminally-substituted olefins react in the same order of reaction rates as above: [2] Trisubstituted alkenes experience reactivity at the more substituted end of the double bond.
The Strecker amino acid synthesis, also known simply as the Strecker synthesis, is a method for the synthesis of amino acids by the reaction of an aldehyde with cyanide in the presence of ammonia. The condensation reaction yields an α-aminonitrile, which is subsequently hydrolyzed to give the desired amino acid.
Ethylamine undergoes the reactions anticipated for a primary alkyl amine, such as acylation and protonation. Reaction with sulfuryl chloride followed by oxidation of the sulfonamide give diethyldiazene, EtN=NEt. [10] Ethylamine may be oxidized using a strong oxidizer such as potassium permanganate to form acetaldehyde.
An example of the Hell–Volhard–Zelinsky reaction can be seen in the preparation of alanine from propionic acid.In the first step, a combination of bromine and phosphorus tribromide is used in the Hell–Volhard–Zelinsky reaction to prepare 2-bromopropionic acid, [3] which in the second step is converted to a racemic mixture of the amino acid product by ammonolysis.
Reactions between aldimines and α-methylene carbonyls are also considered Mannich reactions because these imines form between amines and aldehydes. The reaction is named after Carl Mannich. [2] [3] Scheme 1 – Ammonia or an amine reacts with formaldehyde and an alpha acidic proton of a carbonyl compound to a beta amino carbonyl compound.
Methylamine has been produced industrially since the 1920s (originally by Commercial Solvents Corporation for dehairing of animal skins). [4] This was made possible by Kazimierz Smoleński [] and his wife Eugenia who discovered amination of alcohols, including methanol, on alumina or kaolin catalyst after WWI, filed two patent applications in 1919 [5] and published an article in 1921.
The Hofmann rearrangement (Hofmann degradation) is the organic reaction of a primary amide to a primary amine with one less carbon atom. [1] [2] [3] The reaction involves oxidation of the nitrogen followed by rearrangement of the carbonyl and nitrogen to give an isocyanate intermediate.
In organic chemistry, the Arndt–Eistert reaction is the conversion of a carboxylic acid to its homologue. It is named for the German chemists Fritz Arndt (1885–1969) and Bernd Eistert (1902–1978). The method entails treating an acid chlorides with diazomethane. It is a popular method of producing β-amino acids from α-amino acids. [1]