Search results
Results from the WOW.Com Content Network
Before gastrulation, the embryo is a continuous epithelial sheet of cells; by the end of gastrulation, the embryo has begun differentiation to establish distinct cell lineages, set up the basic axes of the body (e.g. dorsal–ventral, anterior–posterior), and internalized one or more cell types including the prospective gut.
Fish embryos go through a process called mid-blastula transition which is observed around the tenth cell division in some fish species. Once zygotic gene transcription starts, slow cell division begins and cell movements are observable. [4] During this time three cell populations become distinguished. The first population is the yolk syncytial ...
During gastrulation cells migrate to the interior of the blastula, subsequently forming two (in diploblastic animals) or three (triploblastic) germ layers. The embryo during this process is called a gastrula. The germ layers are referred to as the ectoderm, mesoderm and endoderm.
The archenteron, also called the gastrocoel, the primitive digestive tube or the primitive gut, is the internal cavity of the primitive gastrointestinal tract that forms during gastrulation in a developing animal embryo. It develops into the endoderm and mesoderm of the animal.
Ingression is a very dynamic process however, and the first sign of an ingressing cell is seen when a future PMC loses its adhesion to hyaline, and cadherin, and increases its adhesion to a basal laminal substrate. These processes occur rapidly, over approximately 30 minutes. It is not understood how the PMCs penetrate the basal lamina.
During the third week, a process called gastrulation creates a mesodermal layer between the endoderm and the ectoderm. This process begins with the formation of a primitive streak on the surface of the epiblast. [6] The cells of the layers move between the epiblast and the hypoblast, and begin to spread laterally and cranially.
The Florida red tide organism, known as K. brevis, produces brevetoxins that can affect the central nervous system of fish and other vertebrates, causing these animals to die.
A degenerative process called follicular atresia reabsorbs vitellogenic oocytes not spawned. This process can also occur, but less frequently, in oocytes in other development stages. [1] Some fish are hermaphrodites, having both testes and ovaries either at different phases in their life cycle or, as in hamlets, have them simultaneously.